Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A property of infinitely differentiable functions


Author: Ha Huy Bang
Journal: Proc. Amer. Math. Soc. 108 (1990), 73-76
MSC: Primary 26E10
DOI: https://doi.org/10.1090/S0002-9939-1990-1024259-9
MathSciNet review: 1024259
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of ${\lim _{n \to \infty }}||{f^{(n)}}||_p^{1/n}$ for an arbitrary function $f(x) \in {C^\infty }({\mathbf {R}})$ such that ${f^{\left ( n \right )}}(x) \in {L^p}({\mathbf {R}}),n = 0,1, \ldots (1 \leq p \leq \infty )$ and the concrete calculation of ${\lim _{n \to \infty }}||{f^{(n)}}||_p^{1/n}$ are shown.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26E10

Retrieve articles in all journals with MSC: 26E10


Additional Information

Article copyright: © Copyright 1990 American Mathematical Society