POSITIVE SOLUTIONS OF DIFFERENCE EQUATIONS

CH. G. PHILOS AND Y. G. SFICAS

(Communicated by Kenneth R. Meyer)

ABSTRACT. Consider the difference equation

(E)
$$(-1)^{m+1} \Delta^m A_n + \sum_{k=0}^{\infty} p_k A_{n-l_k} = 0,$$

where m is a positive integer, $(p_k)_{k\geq 0}$ is a sequence of positive real numbers and $(l_k)_{k\geq 0}$ is a sequence of integers with $0\leq l_0< l_1< l_2<\cdots$. The characteristic equation of (E) is

$$-(1-\lambda)^{m} + \sum_{k=0}^{\infty} p_{k} \lambda^{-l_{k}} = 0.$$

We prove the following theorem.

Theorem. (i) For m even, (E) has a positive solution $(A_n)_{n\in \mathbb{Z}}$ with $\limsup_{n\to\infty} A_n < \infty$ if and only if (*) has a root in (0,1).

(ii) For modd, (E) has a positive solution $(A_n)_{n\in\mathbb{Z}}$ if and only if (*) has a root in (0,1).

1. Introduction

Recently, there has been a lot of activity concerning the oscillatory behavior of the solutions of difference equations. See, for example, [1,2,3 and 4] and the references cited therein. Our aim in this paper is to obtain necessary and sufficient conditions for the existence of positive solutions of certain difference equations.

Let $Z = \{..., -1, 0, 1, ...\}$. The forward difference operator Δ is defined as usual, i.e.

$$\Delta S_n = S_{n+1} - S_n, \qquad n \in \mathbb{Z}$$

for any sequence $(S_n)_{n\in\mathbb{Z}}$ of real numbers. Moreover, if $(A_n)_{n\in\mathbb{Z}}$ is a sequence, we define

$$\Delta^0 A_n = A_n$$
, and $\Delta^i A_n = \Delta(\Delta^{i-1} A_n)$ $(i = 1, 2, ...)$

for every $n \in \mathbb{Z}$.

Received by the editors February 7, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 39A10.

Key words and phrases. Difference equation, solution, positive solution.

Consider the difference equation

(E)
$$(-1)^{m+1} \Delta^m A_n + \sum_{k=0}^{\infty} p_k A_{n-l_k} = 0,$$

where m is a positive integer, $(p_k)_{k\geq 0}$ is a sequence of positive real numbers and $(l_k)_{k\geq 0}$ is a sequence of integers with $0\leq l_0< l_1< l_2<\cdots$.

By a solution of (E) we mean a sequence $(A_n)_{n\in Z}$ which satisfies (E) for all $n\in Z$. A solution $(A_n)_{n\in Z}$ of (E) is called positive if $A_n>0$ for every $n\in Z$. Moreover, a positive solution $(A_n)_{n\in Z}$ of (E) is said to be bounded at ∞ if $\limsup_{n\to\infty}A_n<\infty$.

The characteristic equation of (E) is

$$-(1-\lambda)^{m} + \sum_{k=0}^{\infty} p_{k} \lambda^{-l_{k}} = 0.$$

In this paper we prove the following result.

Theorem. (i) For m even, (E) has a positive solution which is bounded at ∞ if and only if (*) has a root in (0,1).

(ii) For m odd, (E) has a positive solution if and only if (*) has a root in (0,1).

To prove our theorem we need two lemmas. These lemmas are established in $\S 2$. The proof of the theorem will be given in $\S 3$.

It is easy to verify that

$$\sup_{\lambda \in (0,1)} [(1-\lambda)^m \lambda^l] = \frac{m^m l^l}{(m+l)^{m+l}} \quad \text{for } l \in \{0,1,\dots\}.$$

(Here, we use the convention that $0^0 = 1$.) Hence, for every $\lambda \in (0, 1)$

$$-(1-\lambda)^{m} + \sum_{k=0}^{\infty} p_{k} \lambda^{-l_{k}} = (1-\lambda)^{m} \left[-1 + \sum_{k=0}^{\infty} p_{k} \frac{1}{(1-\lambda)^{m} \lambda^{l_{k}}} \right]$$
$$\geq (1-\lambda)^{m} \left[-1 + \sum_{k=0}^{\infty} p_{k} \frac{(m+l_{k})^{m+l_{k}}}{m^{m} l_{k}^{l_{k}}} \right]$$

and so the assumption

(C)
$$\sum_{k=0}^{\infty} p_k \frac{(m+l_k)^{m+l_k}}{m^m l_k^{l_k}} > 1$$

implies that (*) has no roots in (0,1). Therefore, our theorem leads to the following corollary.

Corollary. Suppose that (C) holds. Then:

- (i) For m even, there is no positive solution of (E) which is bounded at ∞ .
- (ii) For m odd, there is no positive solution of (E).

The oscillatory behavior of solutions of the difference equation

$$(-1)^{m+1} \Delta^m A_n + \sum_{k=0}^{N} p_k A_{n-l_k} = 0,$$

where N is a non-negative integer, p_k $(k=0,1,\ldots,N)$ are positive constants and l_k $(k=0,1,\ldots,N)$ are integers with $0 \le l_0 < l_1 < \cdots < l_N$, can be studied by a detailed analysis of the representation of the solutions in terms of the roots of the characteristic equation. The above equation is the discrete version of the delay differential equation

$$(-1)^{m+1}x^{(m)}(t) + \sum_{k=0}^{N} p_k x(t - \tau_k) = 0,$$

where $N \ge 0$ is an integer, the coefficients p_0 , p_1 , ..., p_N are positive numbers and the delays are constants such that $0 \le \tau_0 < \tau_1 < \cdots < \tau_N$. The oscillation of solutions of this differential equation is treated in [5]. However, this is the first paper dealing with difference equations of the form (E). For such difference equations no representation of solutions in terms of the roots of (*) is known.

2. Lemmas

The following two lemmas will be useful in §3.

Lemma 1. Let $(A_n)_{n\in\mathbb{Z}}$ be a positive solution of (E) which is bounded at ∞ . Then

$$(-1)^{j} \Delta^{j} A_{n} > 0$$
 for all $n \in \mathbb{Z}$ $(j = 0, 1, ..., m - 1, m)$.

Proof. From (E) we obtain for $n \in \mathbb{Z}$

$$(-1)^m \Delta^m A_n = \sum_{k=0}^{\infty} p_k A_{n-l_k}$$

and consequently

$$(1) (-1)^m \Delta^m A_n > 0 \text{for all } n \in \mathbb{Z}.$$

For m = 1 the proof is complete. So, we assume that m > 1. We now claim that

(2)
$$(-1)^{m-1} \Delta^{m-1} A_n > 0 for every n \in Z.$$

Otherwise, there exists an integer n_1 with

$$(-1)^{m-1} (\Delta^{m-1} A_n)_{n=n_1} \le 0.$$

From (1) it follows that the sequence $((-1)^{m-1}\Delta^{m-1}A_n)_{n\in\mathbb{Z}}$ is strictly decreasing. Hence, if we choose an integer $n_2 > n_1$, then we derive for $n \ge n_2$

$$(-1)^{m-1}\Delta^{m-1}A_n \leq (-1)^{m-1}(\Delta^{m-1}A_n)_{n=n_2} < (-1)^{m-1}(\Delta^{m-1}A_n)_{n=n_1} \leq 0.$$

Therefore

$$(-1)^{m-1} \Delta^{m-1} A_n \le -\gamma$$
 for every $n \ge n_2$,

where
$$\gamma = -(-1)^{m-1}(\Delta^{m-1}A_n)_{n=n_2} > 0$$
. So, we obtain for $n > n_2$

$$(-1)^{m-1}\Delta^{m-2}A_n - (-1)^{m-1}(\Delta^{m-2}A_n)_{n=n_2}$$

$$= [(-1)^{m-1}\Delta^{m-2}A_n - (-1)^{m-1}\Delta^{m-2}A_{n-1}]$$

$$+ [(-1)^{m-1}\Delta^{m-2}A_{n-1} - (-1)^{m-1}\Delta^{m-2}A_{n-2}]$$

$$+$$

$$\vdots$$

$$+ [(-1)^{m-1}(\Delta^{m-2}A_n)_{n=n_2+1} - (-1)^{m-1}(\Delta^{m-2}A_n)_{n=n_2}]$$

$$= (-1)^{m-1}\Delta^{m-1}A_{n-1} + (-1)^{m-1}\Delta^{m-1}A_{n-2} + \cdots$$

$$\cdots + (-1)^{m-1}(\Delta^{m-1}A_n)_{n=n_2}$$

$$< -\gamma(n-n_2),$$

which gives

(3)
$$\lim_{n\to\infty} (-1)^{m-1} \Delta^{m-2} A_n = -\infty.$$

Since $(A_n)_{n\in \mathbb{Z}}$ is bounded at ∞ , (3) is a contradiction if m=2. So, we suppose that m>2 and we consider a positive constant γ_1 . Then (3) implies the existence of an integer n_3 such that

$$(-1)^{m-1} \Delta^{m-2} A_n \le -\gamma_1 \quad \text{for every } n \ge n_3.$$

Thus, by applying the method used previously, we can obtain

$$\lim_{n\to\infty} (-1)^{m-1} \Delta^{m-3} A_n = -\infty.$$

Next, repeating the above procedure if m > 3, we finally find

$$\lim_{n\to\infty} (-1)^{m-1} A_n = -\infty,$$

which contradicts the fact that $(A_n)_{n\in Z}$ is positive and that this sequence is bounded at ∞ . We have thus proved that (2) is true. If m=2, the proof of the lemma is complete. If m>2, then, repeating the above arguments, we can show that

$$(-1)^{m-2} \Delta^{m-2} A_n > 0$$
 for all $n \in \mathbb{Z}$.

By using this technique, we can complete the proof of the lemma.

Lemma 2. Let m be odd. Then every positive solution of (E) is bounded at ∞ . Proof. Assume, for the sake of contradiction, that (E) has a positive solution $(A_n)_{n\in Z}$ which is not bounded at ∞ . Since m is odd, from (E) it follows that

(4)
$$\Delta^m A_n < 0 \quad \text{for all } n \in \mathbb{Z}.$$

Thus, we always have m > 1. Furthermore, (4) implies that, if $j \in \{1, ..., m-1\}$, then $\Delta^j A_n$ is either positive for all large n or negative for all large n.

In particular, since $(A_n)_{n\in \mathbb{Z}}$ is not bounded at ∞ , there exists an integer n_0 such that

(5)
$$\Delta A_n > 0$$
 for every $n \ge n_0$.

Furthermore, we have

(6)
$$\Delta^{m-1}A_n > 0 \quad \text{for all } n \in \mathbb{Z}.$$

Indeed, in the opposite case we can apply the method used in the proof of Lemma 1 to obtain $\lim_{n\to\infty} (-1)^{m-1} A_n = -\infty$. So, since m is odd,

$$\lim_{n\to\infty} A_n = -\infty.$$

This contradicts the positiveness of $(A_n)_{n\in \mathbb{Z}}$ and hence (6) is true. Now, we observe that, by (5), the sequence $(A_n)_{n\geq n_0}$ is strictly increasing. By using this fact, (6) and (E), for $n>N\equiv n_0+l_0$ we obtain

$$\begin{split} &-(\Delta^{m-1}A_n)_{n=N} < \Delta^{m-1}A_n - (\Delta^{m-1}A_n)_{n=N} \\ &= (\Delta^{m-1}A_n - \Delta^{m-1}A_{n-1}) + (\Delta^{m-1}A_{n-1} - \Delta^{m-1}A_{n-2}) + \cdots \\ &\qquad \qquad \cdots + \left[(\Delta^{m-1}A_n)_{n=N+1} - (\Delta^{m-1}A_n)_{n=N} \right] \\ &= \Delta^m A_{n-1} + \Delta^m A_{n-2} + \cdots + (\Delta^m A_n)_{n=N} \\ &= -\sum_{k=0}^{\infty} p_k A_{n-1-l_k} - \sum_{k=0}^{\infty} p_k A_{n-2-l_k} - \cdots - \sum_{k=0}^{\infty} p_k A_{N-l_k} \\ &< -p_0 A_{n-1-l_0} - p_0 A_{n-2-l_0} - \cdots - p_0 A_{N-l_0} \\ &\leq -p_0 A_{n,} (n-N) \end{split}$$

and so we arrive at the contradiction

$$n < N + \frac{1}{p_0 A_{n_0}} (\Delta^{m-1} A_n)_{n=N} \quad \text{for every } n > N.$$

3. Proof of the theorem

In view of Lemma 2, for m odd there is no positive solution of (E) which is not bounded at ∞ . Hence, it is enough to prove part (ii) of our theorem only for positive solutions which are bounded at ∞ . Therefore, the proof of the theorem has been reduced to proving, for arbitrary m, the following result: Equation (E) has a positive solution which is bounded at ∞ if and only if (*) has a root in (0,1).

Assume first that (*) has a root $\lambda \in (0,1)$. Then we set $A_n = \lambda^n$, $n \in \mathbb{Z}$ and we obtain

$$(-1)^{m+1} \Delta^m A_n + \sum_{k=0}^{\infty} p_k A_{n-l_k} = (-1)^{m+1} (\lambda - 1)^m \lambda^n + \sum_{k=0}^{\infty} p_k \lambda^{n-l_k}$$
$$= [-(1 - \lambda)^m + \sum_{k=0}^{\infty} p_k \lambda^{-l_k}] \lambda^n = 0$$

for all $n \in \mathbb{Z}$. Thus, $(A_n)_{n \in \mathbb{Z}}$ is a positive solution of (E) which obviously is bounded at ∞ .

Suppose, conversely, that there is a positive solution $(A_n)_{n\in Z}$ of (E) which is bounded at ∞ . Also assume, for the sake of contradiction, that the characteristic equation (*) has no roots in (0,1). From Lemma 1 it follows that $\Delta A_n < 0$ for all $n\in Z$ and consequently $(A_n)_{n\in Z}$ is a strictly decreasing sequence. So, from (E) we obtain for every $n\in Z$

$$0 = (-1)^{m+1} \Delta^m A_n + \sum_{k=0}^{\infty} p_k A_{n-l_k} > (-1)^{m+1} \Delta^m A_n + \left(\sum_{k=0}^{\infty} p_k\right) A_n$$

and therefore

$$(7) 0 < \sum_{k=0}^{\infty} p_k < \infty.$$

Set

$$F(\lambda) = -(1 - \lambda)^m + \sum_{k=0}^{\infty} p_k \lambda^{-l_k} \quad \text{for } \lambda \in (0, 1].$$

Then

$$F(1) = \sum_{k=0}^{\infty} p_k \in (0, \infty).$$

Moreover, we have $F(\lambda) > -(1-\lambda)^m + p_1 \lambda^{-l_1}$ for every $\lambda \in (0,1)$, and so $F(0+0) = \infty$.

Hence, as $F(\lambda) = 0$ has no roots in (0,1), there exists a positive number μ such that

(8)
$$-(1-\lambda)^m + \sum_{k=0}^{\infty} p_k \lambda^{-l_k} \ge \mu \quad \text{for all } \lambda \in (0,1).$$

Next, by taking into account (7), we put

$$\lambda_0 = 1 - \left(\sum_{k=0}^{\infty} p_k\right)^{1/m}$$
, and $\lambda_r = 1 - \left[\left(1 - \lambda_{r-1}\right)^m + \mu\right]^{1/m}$ $(r = 1, 2, ...)$.

Furthermore, we define

$$A_n^{[0]} = A_n \qquad \text{for } n \in \mathbb{Z}$$

and

$$A_n^{[r]} = \sum_{j=0}^{m-1} (1 - \lambda_{r-1})^{m-1-j} (-1)^j \Delta^j A_n^{[r-1]} \quad \text{for } n \in \mathbb{Z} \quad (r = 1, 2, \dots).$$

Then, for any $r \in \{0, 1, ...\}$, $(A_n^{[r]})_{n \in \mathbb{Z}}$ is a positive solution of (E) which is bounded at ∞ . Indeed, consider a positive solution $(\widetilde{A}_n)_{n \in \mathbb{Z}}$ of (E) which is bounded at ∞ . In view of Lemma 1, we have

$$(-1)^{j} \Delta^{j} \widetilde{A}_{n} > 0$$
 for all $n \in \mathbb{Z}$ $(j = 0, 1, ..., m - 1, m)$.

Thus, if $j \in \{0,1,\ldots,m-1\}$, then $((-1)^j\Delta^j\widetilde{A}_n)_{n\in Z}$ is a positive sequence which is strictly decreasing (and, therefore, bounded at ∞). Moreover, since (E) is linear and the coefficients p_k $(k=0,1,\ldots)$ and the indices l_k $(k=0,1,\ldots)$ are independent of n, it follows that, for each $j \in \{0,1,\ldots,m-1\}$, the sequence $((-1)^j\Delta^j\widetilde{A}_n)_{n\in Z}$ is a solution of (E). Hence, each one of the sequences $((-1)^j\Delta^j\widetilde{A}_n)_{n\in Z}$ $(j=0,1,\ldots,m-1)$ is a positive solution of (E) which is bounded at ∞ . Therefore, because of the linearity of (E), it follows that, if c_0 , c_1 , ..., c_{m-1} are positive constants, then the sequence $(\sum_{j=0}^{m-1}c_j(-1)^j\Delta^j\widetilde{A}_n)_{n\in Z}$ is a positive solution of (E) which is bounded at ∞ . Now, we can easily see that $1-\lambda_r>0$ $(r=0,1,\ldots)$. So, by the above particular result and by mathematical induction, we can show that: If $r\in\{0,1,\ldots\}$, then $(A_n^{[r]})_{n\in Z}$ is a positive solution of (E) which is bounded at ∞ .

We have

(9)
$$(-1)^{m+1} \Delta^m A_n^{[r]} + (1 - \lambda_r)^m A_n^{[r]} = A_{n+1}^{[r+1]} - \lambda_r A_n^{[r+1]}$$
 for $n \in \mathbb{Z}$ $(r = 0, 1, ...)$.

In fact, for any $r \in \{0, 1, ...\}$ and every $n \in \mathbb{Z}$, we obtain

$$\begin{split} A_{n+1}^{[r+1]} - \lambda_r A_n^{[r+1]} \\ &= \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-1-j} (-1)^j \Delta^j A_{n+1}^{[r]} - \lambda_r \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-1-j} (-1)^j \Delta^j A_n^{[r]} \\ &= \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-1-j} (-1)^j (\Delta^j A_{n+1}^{[r]} - \Delta^j A_n^{[r]}) \\ &+ (1 - \lambda_r) \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-1-j} (-1)^j \Delta^j A_n^{[r]} \\ &= \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-1-j} (-1)^j \Delta^{j+1} A_n^{[r]} + \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-j} (-1)^j \Delta^j A_n^{[r]} \\ &= -\sum_{j=1}^{m} (1 - \lambda_r)^{m-j} (-1)^j \Delta^j A_n^{[r]} + \sum_{j=0}^{m-1} (1 - \lambda_r)^{m-j} (-1)^j \Delta^j A_n^{[r]} \\ &= (-1)^{m+1} \Delta^m A_n^{[r]} + (1 - \lambda_r)^m A_n^{[r]}. \end{split}$$

Now, we will prove that

(10)
$$A_{n+1}^{[r+1]} - \lambda_r A_n^{[r+1]} < 0 \quad \text{for all } n \in \mathbb{Z} \quad (r = 0, 1, \dots).$$

Indeed, in view of Lemma 1, the sequence $(A_n)_{n\in\mathbb{Z}}$ is strictly decreasing. Therefore, we obtain for every $n\in\mathbb{Z}$

$$(-1)^{m+1} \Delta^m A_n^{[0]} + (1 - \lambda_0)^m A_n^{[0]} = (-1)^{m+1} \Delta^m A_n + \left(\sum_{k=0}^{\infty} p_k\right) A_n$$
$$< (-1)^{m+1} \Delta^m A_n + \sum_{k=0}^{\infty} p_k A_{n-l_k} = 0$$

and hence, by (9), we conclude that (10) is true for r = 0. Next, assuming that (10) holds for some $r \in \{0, 1, ...\}$ we should prove that it is also true for r + 1. By the inductive assumption,

$$A_{n+1}^{[r+1]} - \lambda_r A_n^{[r+1]} < 0 \qquad \text{for every } n \in \mathbb{Z}.$$

This implies in particular that $\lambda_r > 0$. On the other hand, $\lambda_r < 1$. So, we must have $0 < \lambda_r < 1$. Furthermore, we have

$$A_n^{[r+1]} > \lambda_r^{-1} A_{n+1}^{[r+1]}$$
 for $n \in \mathbb{Z}$.

By applying this inequality, we can verify that

$$A_{n-l_0}^{[r+1]} \ge \lambda_r^{-l_0} A_n^{[r+1]} \quad \text{for all } n \in \mathbb{Z}$$

and

$$A_{n-l_k}^{[r+1]} > \lambda_r^{-l_k} A_n^{[r+1]}$$
 for all $n \in \mathbb{Z}$ $(k = 1, 2, ...)$.

Hence, from (E) we obtain for $n \in \mathbb{Z}$

$$0 = (-1)^{m+1} \Delta^m A_n^{[r+1]} + \sum_{k=0}^{\infty} p_k A_{n-l_k}^{[r+1]}$$
$$> (-1)^{m+1} \Delta^m A_n^{[r+1]} + \left(\sum_{k=0}^{\infty} p_k \lambda_r^{-l_k}\right) A_n^{[r+1]}.$$

But (8) ensures that

$$\sum_{k=0}^{\infty} p_k \lambda_r^{-l_k} \ge (1 - \lambda_r)^m + \mu = (1 - \lambda_{r+1})^m.$$

So, in view of (9), we have for every $n \in \mathbb{Z}$

$$\begin{split} 0 &> (-1)^{m+1} \Delta^m A_n^{[r+1]} + (1 - \lambda_{r+1})^m A_n^{[r+1]} \\ &= A_{n+1}^{[r+2]} - \lambda_{r+1} A_n^{[r+2]}. \end{split}$$

That is, (10) is also satisfied for r + 1.

Finally, since $A_n^{[r+1]} > 0$ for all $n \in \mathbb{Z}$ (r = 0, 1, ...), from (10) it follows that

$$\lambda_r > 0$$
 $(r = 0, 1, \ldots).$

On the other hand, it is easy to verify that the sequence $(\lambda_r)_{r=0,1,\dots}$ is strictly decreasing. So, $L \equiv \lim_{r\to\infty} \lambda_r$ exists and $0 \le L < \lambda_0 < 1$. Since

$$\lambda_r = 1 - [(1 - \lambda_{r-1})^m + \mu]^{1/m} \qquad (r = 1, 2, ...),$$

we obtain

$$L = 1 - [(1 - L)^m + \mu]^{1/m},$$

which gives $\mu = 0$, a contradiction. The proof of our theorem is complete.

ACKNOWLEDGMENT

The authors wish to thank Professor G. Ladas for helpful conversations on the subject of this paper.

REFERENCES

- 1. L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential and Integral Equations 2 (1989), 300-309.
- 2. I. Györi and G. Ladas, Linearized oscillations for equations with piecewise constant arguments, Differential and Integral Equations 2 (1989), 123-131.
- 3. G. Ladas, Oscillations of equations with piecewise constant mixed arguments, Proceedings of the International Conference on Theory and Applications of Differential Equations, March 21-25, 1988, Ohio University.
- 4. G. Ladas, Ch. G. Philos and Y. G. Sficas, Necessary and sufficient conditions for the oscillation of difference equations Libertas Math. 9 (1989).
- 5. G. Ladas, Y. G. Sficas and I. P. Stavroulakis, Necessary and sufficient conditions for oscillations of higher order delay differential equations, Trans. Amer. Math. Soc. 285 (1984), 81-90.

Department of Mathematics, University of Ioannina, P. O. Box. 1186, 451 10 Ioannina, Greece