On asymptotic behavior of the mass of rays
Author:
Takashi Shioya
Journal:
Proc. Amer. Math. Soc. 108 (1990), 495-505
MSC:
Primary 53C20
DOI:
https://doi.org/10.1090/S0002-9939-1990-0986652-X
MathSciNet review:
986652
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the measure of the set of all unit vectors tangent to rays emanating from a point in a finitely connected complete open Riemannian
-manifold
. If
with one end admits total curvature
, then this measure tends to
as
tends to infinity, where
is the Euler characteristic.
- [1] S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Composito Math. 2 (1935), 63-133.
- [2] -, Totalkrümmung und geodätische Linien auf einfach zusammenhängenden offenen volständigen Flächenstücken, Recueil Math. Moscow 43 (1936), 139-163.
- [3] F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à courbure positive, Comment. Math. Helv. 13 (1941), 293–346 (French). MR 6422, https://doi.org/10.1007/BF01378068
- [4] Philip Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964), 705–727. MR 173222, https://doi.org/10.2307/2373154
- [5] Masao Maeda, On the existence of the rays, Sci. Rep. Yokohama Nat. Univ. Sect. I 26 (1979), 1–4. MR 553892
- [6] Masao Maeda, A geometric significance of total curvature on complete open surfaces, Geometry of geodesics and related topics (Tokyo, 1982) Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1984, pp. 451–458. MR 758663, https://doi.org/10.2969/aspm/00310451
- [7] Masao Maeda, On the total curvature of noncompact Riemannian manifolds. II, Yokohama Math. J. 33 (1985), no. 1-2, 93–101. MR 817975
- [8] Takayuki Oguchi, Total curvature and measure of rays, Proc. Fac. Sci. Tokai Univ. 21 (1986), 1–4. MR 844742
- [9] Koichi Shiga, On a relation between the total curvature and the measure of rays, Tsukuba J. Math. 6 (1982), no. 1, 41–50. MR 675599, https://doi.org/10.21099/tkbjm/1496159448
- [10] Koichi Shiga, A relation between the total curvature and the measure of rays. II, Tohoku Math. J. (2) 36 (1984), no. 1, 149–157. MR 733625, https://doi.org/10.2748/tmj/1178228909
- [11] Katsuhiro Shiohama, Cut locus and parallel circles of a closed curve on a Riemannian plane admitting total curvature, Comment. Math. Helv. 60 (1985), no. 1, 125–138. MR 787666, https://doi.org/10.1007/BF02567404
- [12] Katsuhiro Shiohama, Total curvatures and minimal areas of complete surfaces, Proc. Amer. Math. Soc. 94 (1985), no. 2, 310–316. MR 784184, https://doi.org/10.1090/S0002-9939-1985-0784184-3
- [13] Katsuhiro Shiohama, An integral formula for the measure of rays on complete open surfaces, J. Differential Geom. 23 (1986), no. 2, 197–205. MR 845705
- [14] K. Shiohama, T. Shioya and M. Tanaka, Mass of rays on complete open surfaces, preprint.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20
Retrieve articles in all journals with MSC: 53C20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0986652-X
Keywords:
Complete open manifolds,
Gauss-Bonnet theorem,
geodesies,
rays,
total curvature
Article copyright:
© Copyright 1990
American Mathematical Society