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Abstract. We consider the measure of the set of all unit vectors tangent to rays

emanating from a point p in a finitely connected complete open Riemannian

2-manifold M . If M with one end admits total curvature c(M), then this

measure tends to min{2nx(M)-c(M),2n} as p tends to infinity, where x(M)

is the Euler characteristic.

0. Introduction

Let M be a complete, noncompact, connected, oriented and finitely con-

nected Riemannian 2-manifold without boundary. The total curvature c(M)

of M is defined by the improper integral over M of Gaussian curvature G :

c(M) := [ GdM,
J M

where dM is the area element of M. It is a well-known theorem due to Cohn-

Vossen [1] that if M admits total curvature, then c(M) < 2nx(M), where

X(M) is the Euler characteristic of M. We study asymptotic behavior of the

mass of rays in terms of the total curvature of a complete open surface.

A ray y:[0,oo) —► M is defined to be a geodesic any subarc of which is

a minimizing segment joining its endpoints. We denote the tangent space of

M at p by M . Let S c M be the set of all unit vectors at p and let

A c S be the set of all unit vectors tangent to rays emanating from p . We

denote by "meas" the Lebesgue measure on the unit circle S with the total

measure 2n. Since the limit of a sequence of rays in M is a ray, A is a

closed and measurable subset of S and the function p i~» meas(^ ) is upper-

semicontinous. Thus this function is locally integrable in the sense of Lebesgue.

The first result on the relation between the total curvature and the measure

of A   was obtained by Maeda.
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Theorem (Maeda [6]). If M is homeomorphic to R and if it has nonnegative

Gaussian curvature everywhere, then

inf meas(v4 ) = 2n - c(Af).

In [10], Shiga extended this result to the case when the sign of Gaussian

curvature changes. Moreover, Oguchi [8] extended their results to the case

when M has only one end. Shiohama proved the following integral formula

for the mass of rays.

Theorem (Shiohama [13]). Assume that M with one end admits total curvature

with 2nx(M) - c(M) < 2n. If {KA is a monotone increasing sequence of

compact sets with IJ K. = M, then

fr meas(AAdM
(.) lim    K> M =2nX(M)-c(M).

The following Theorem A which will be proved in §2 plays an essential role

throughout this paper.

Theorem A. Assume that M with one end admits total curvature. Let {pA be

an arbitrary divergent sequence of points of M. Then,

lim meas(A  ) = min{2nx(M) - c(Af), 2n}.

In the case when 2nx(M)-c(M) < 2n , Theorem A was proved by Shiohama

in the proof of the integral formula (*). A crucial point of the proof of (*)

in the case when 2nx(M) - c(M) < 2n is nonexistence of straight lines. We

emphasize that in our case M admits straight lines and this situation makes

the proof difficult. To overcome this difficulty we need delicate arguments as

developed in Lemmas 2.1, 2.2, 2.3, and 2.4. In §2, we will prove Theorem A in

the case when 2nx(M) - c(M) > 2n . We can extend Theorem A to the case

when M has more than one end as stated in Theorem B.

In §3, we will discuss the case when M has finitely many ends. To state

Theorem B some definitions and notations are needed. Assume that M is

finitely connected with k ends and that M admits total curvature. Let K be a

compact domain on M suchthat M-lnt(K) is a union of disjoint closed half

cylinders Ux, ... ,Uk (we call them tubes) and dK consists of k simple closed

piecewise smooth curves. For any domain D bounded by piecewise smooth

curves cx, ... ,cn each of which is parametrized positively by arc length relative

to D, we denote by k(D) the sum of curvature integrals of cx, ... ,cn and of

the outer angles at all the vertices of D. If we set st{M) := -c(U¡) - k(U¡) for

i = I, ... ,k , then

53  Sj(M) = 2nx(M)-c(M).
\<i<k

The value s¡{M) does not depend on the choice of tube Ui by the Gauss-Bonnet

Theorem.
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With these notations Theorem B is stated as follows.

Theorem B. Assume that M with k ends admits total curvature.  Let Ul  be

a tube of M and let {pA be an arbitrary divergent sequence of points of Ui.

Then
lim meas{A   ) = min{5 (Af), 2n} .

j—too pJ

The following Corollaries C, D, and Theorem E are straightforward conse-

quences of Theorem B and the isoperimetric inequality stated in Lemma 1.3

(2) (see [14]). The proofs are omitted here.

Corollary C. Under the same assumption as in Theorem B, let {pA be an arbi-

trary divergent sequence of points of M. Then,

min {s (M),2n\ < liminfmeasM   )

< limsupmeas(^4„ )
j—>oo

< max minis,(Af),27r} .
\<i<k '

Theorem D. Assume that M with k ends admits total curvature. Let {KA be a

monotone increasing sequence of compact subsets of M with \JK- = M. Then

we have
L, meas(AAdM

min {5,(Af),27t} < liminf^i-
\<i<k    ' '' :   j^oo fK dMK,

fK meas(A )dM
< lim SUP —-?-JY7-

j^oo JKj dM

< max min{st(M) ,2n} .
\<i<k

Theorem E. Assume that M with k ends admits total curvature. Let c be a

simple closed smooth curve in M and let B(t) := {x e M ; d(x ,c) < t} . Then

we have

[im fwm1^      f ^<"^T:!T'J"    ,/2^M)-c(M)>0,
'^°°        ¡B(t)dM \o if 2nx(M) - c(M) = 0.

1. Preliminaries

In this section, we state the notations and lemmas used for the proof of our

results. Let M be a finitely connected complete open 2-manifold admitting

total curvature. Let D c M be a domain as stated in §0. Then k(D) has the

following properties.

(1.1) k(D) =-k(M - D).

(1.2) If D is bounded, then c(D) = 2nx(D) - k(D) .

(1.3) Assume that dD consists of a curve c homeomorphic to a line such

that c\(-oo,a],c\[b,oo) are geodesies for some a,beR. Then,

c(D) <2nx(D)-n-K(D).
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(1.4) In (1.3), if dD(c(t),c(-t)) > 2t-r for all t > 0 and for some constant

r > 0,then

c(D)<2nx(D)-2n-K(D)

where dD is the inner distance on C1(D), the closure of D, induced

from the Riemannian structure of Af.

(1.1) is obvious. (1.2) follows from the Gauss-Bonnet Theorem. (1.3) and (1.4)

are due to Cohn-Vossen [2].

For the rest of this section we assume that M has only one end. The fol-

lowing Lemma 1.1 plays an important role for the proof of Lemmas 2.1 and

2.2.

Lemma 1.1 (Shiga [10]). Let a ,y be rays emanating from a point p in M.

Assume that er U y bounds a domain D and that Int(D) does not contain any

ray emanating from p. If 8 is the inner angle of D at p, then we have

c(D) = 2nx{D)-2n + 8.

The proof of Lemma 1.1 proceeds in outline as follows. Since Int(D) does

not contain any ray emanating from p, there is a divergent sequence {qA in D

with the property that there exist two minimizing geodesies £, and n. joining

p to q. in D such that lime; = y and limw. = a and such that the inner

angle at q. of the disk domain D] in D bounded by ¡J. and r\. tends to zero

as j' —► oo . The sequence {DA of disk domains is monotone increasing and

satisfies (J D = D.

For a point p e M and for u e A let yu(t) := exp tu for t > 0. Let K

be an arbitrary fixed compact domain bounded by a piecewise smooth closed

curve such that M - K is an open half cylinder. For any geodesic y passing

through a point of K, set

t0(y) := min{i ; y(t) n dK},       tx (y) := max{t ; y(t) n dK).

For a point p e M - K, set

Ap(K):={veAp;yv([O,oo))nK¿0},

A'p(K) := {veAp; yv([0, oo)) n lnt(K) = 0} .

For u,v e Ap(K), the two subarcs yu{[0,t0(yu)]), yv([0,t0(yv)]) of the rays

yu,yv and a subarc of dK joining yu(t0(yu)) to yv(t0(yv)) together form a

simple closed curve in M-lnt(K) which bounds an open disk domain A lu, v)

in M - K. If we set

Ap(K):=     (J     Ap(u,v)
u,v&Ap(K)

and if 8 (K) is the inner angle of A (K) at p, then the following lemma is

true.

Lemma 1.2 ([14]). For any divergent sequence {pA- of points in M-K, 8 (K)

tends to zero as ¡-»oo.
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The following isoperimetric inequality is used for the proof of our integral

formulas. For a point p e M let

S,(p) := {x e M;d{p,x) = t},       B,{p) := {x eM;d(p,x) < t} .

Lemma 1.3 (Hartman [4] and Shiohama [11]).

(1) There exists a constant R > 0 such that for almost all t > R, St(p) is a

simple closed curve of class C°° except finitely many cut points from p.

(2) We have

,im «ËM _ ,lm **«W) _ |im   w,wf
f->oo       t t^oo f i—oo 2 Area(ör(p))

= 2nX(M) - c(M),

where L(a) is the length of a curve a.

2. The case when M has one end

In this section, we assume that M has only one end and that M admits

total curvature with 2nx(M) - c(M) > 2n. Let AT be a compact domain such

that M — K is an open half cylinder and p a point in M — K. Assume that

A'AK) is nonempty. Then we denote by D (K) the unique component of

M - {expp tv;v e Ap(K), t > 0} such that K c Dp(K).

Lemma 2.1. Let {p¡} be a divergent sequence of points of M. Assume that

for any compact set K such that M - K is an open half cylinder, A' (K) is

nonempty for all sufficiently large i and that the inner angle 8¡ of D (K) at p¡

tends to zero as iS oo. Then

lim meas(/4  ) = 2n .
i-.cc P'

Proof. Let e be an arbitrary given positive number. Let K be a compact subset

of M such that M - K is an open half cylinder and such that

(2.1.1) /       G+
J M-K

G dM <e.

For each i, let {Et   }   be the family of all connected components of

M - ({expp tv;veApi,t>0}o Dp (K)).

Each Et is an open half plane bounded by two rays emanating from pi, and

has the property that there are no rays emanating from p{ in it. Lemma 1.1

implies that c(E¡ ) is equal to the inner angle of Ei at pj. It follows from

(2.1.1) that

27r-meas(^-0i=c((j£;^ <e

j

for all z. Since 8i tends to zero as i —» oo and e is arbitrary, this completes

the proof.
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Lemma 2.2. Let {p¡} be a divergent sequence of points of M. Assume that for

any compact set K, there exists a point p(K) e {p¡} such that A ,KAK) is

empty. Then, there exists a subsequence {pA of {p¡} such that

lim measiA  ) = 2n.
j^oo V    Pi'

Proof. Let {KA be a monotone divergent sequence of compact sets with

[JR. = M such that M - K¡ is an open half cylinder. Set p. := p(K.).

Then

\jDpj(Kj) = M   and   c(Dpj(K])) = 2nX(M)-2n + 8p

where 0   is the inner angle of D  (K.) at p.. Thus,

c(M) = lim c(Dn (K.)) = 2nx(M) - 2n + lim 0..
j—KX> pi      J j—>oo    J

Since 2nx{M) - c(M) > In, lim. ^0. = 0. Therefore Lemma 2.2 follows

from Lemma 2.1.

Lemma 2.3. For any compact domain K' c M such that M-K' is homeomor-

phic to an open half cylinder, there exists a compact convex domain K bounded

by a simple closed curve such that K' c K.

Proof. Let T be the set of all simple closed curves freely homotopic to dK' in

M - Int(K'). Let {c;} be a sequence of elements of T such that

lim L(c¡) = inf L(c).
;'—»oo c&T

For each c; and for an arbitrary fixed point x( on c( there is a y¡ eF such

that

L(y¡) = inf{L(c) ;c eT,c passes through x¡} .

If there exists a subsequence {xA of {x(} suchthat {xA converges to some

point in M, then lim y. becomes a simple closed curve. The lim y. bounds

a compact convex domain, say, K. If {x;} does not contain any convergent

subsequence, then neither does {7.} and hence y¡ is a geodesic loop for all

sufficiently large i. Let Z)( be a compact domain bounded by yi and let 0. be

the inner angle of D¡ at xx. The Gauss-Bonnet Theorem implies

c{D\ = 2nx(M) -n + 8r

Since [J Dt. = M,
c(M) = 2nx(M) - n + lim 0.,

i—»oo

which contradicts 2nx(M) - c(M) > 2n . This completes the proof of Lemma

2.3.

Lemma 2.4. Let {p¡} be a divergent sequence of points of M and let K be

a compact domain of M such that M-K is homeomorphic to an open half

cylinder. Then there exists a number i(K) such that A' (K) is nonempty for all

i > i(K).

Proof. Suppose that there exists a divergent sequence {pA- such that all rays

emanating from p¡ intersect K. From Lemma 2.3, without loss of generality we
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may assume that AT is a convex set and each ray emanating from p(. intersects

Int(AT). Take a point p¡ with pi € M - K and fix it. Assume that dK is

parametrized positively by arc length relative to K. Let fa: Ap-+ dK (a = 0,1 )

be the mappings defined by

/» := «PÄ ta{yv)      forveApr

Convexity of K implies that there exists a unique minimal subarc J'a of dK

such that f {A ) C Jla . All rays emanating from pi pass through points on

/,'. The endpoints of /,' are denoted by fx{vA and fx(w¡) for vi,wi e Ap..

Set cr. := yw and t; := yw . Let Z>) be a domain in Af - K homeomorphic

to an open half plane whose boundary consists of a¡\[tx (er.), oo), xi\[tx (t() , oo)

and dK - J\. By Lemma 1.3 (1) we get a monotone divergent sequence {tj}

such that each Sf.(p(.) is a piecewise smooth simple closed curve and K c

Bt (p.). By the choice of Z^, any ray emanating from pi does not intersect

the arc Sl(p¡) n Z)■. The same argument as developed in the outline of the

proof of Lemma 1.1 implies that there are a cut point qi to pi in St.(pi)nDi

and minimizing geodesic segments c; ,r¡¡:\Q,tj\ —> Af joining p; to q; with

lime; = er. and limz/. = t( . Since er; and t; intersect Int(AT), both \. and

?/ for each sufficiently large ;' intersect Int(AT). Let Fj be a disk domain in

M-K bounded by tyl/^J.ij], ^l^^.),^] and the subarc of ö/i from

¿j-(i,(£;•)) to nj(tx(t]j)) which is contained entirely in dK-J[. Let A;. be a

disk domain in M-K bounded by ct,|[0,i0(a;)), t.|[0,/0(t(.)) and the subarc

of dK joining <x;.(/0(<r(.)) and ^(^(t,)) . Set Di := D't - C1(A;) (see Figure 1).

Figure 1.
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Since U. F' = D¿, a slight modification of the discussion in the outline of

the proof of Lemma 1.1 implies

(2.4.1) c(Di) = n-K(D¡)   and   c{D\) = n - k{D\) .

Since er and t¡ intersect K for all i, there are subsequences {ak} and

{Tj,} such that limer^ = er and limt^ = t for some straight lines er and t.

Then either er = t or erriT = 0. Since AT contains finitely many handles, there

are two cases for the configuration of four points er(/0(er)), o(tx(o)), t(í0(t)) ,

t(í,(t)) on dK.

Case 1. The four points a(t0(a)), t(í0(t)) , t(í,(t)), ^(^(cr)) lie on dK in

this order. Choose disjoint two open half planes Ha and Hx in M-K such

that Ha (resp. Hz) is bounded by cr|(-oo,r0(cr)], o\[t x(a) ,oo) and a subarc

from a(t0(a)) of dK (resp. t((-oo,í0(t)]) , t([/,(t),oo)) and a subarc from

t(/0(t)) to t(í,(t)) of dK). Since the inner angle of Dk at pk tends to 27r

as k —» oo by Lemma 1.2, we have

(2.4.2) limK(Z\) = zc(//TU//T)-7r.

On the other hand, c(Ha) < -k(Ho) and c(Hx) < -k(Ht) by the remark (1.4).

Hence

c(HauHT)<-K(H0UHr).

For a fixed number e e (0, 7t/2) choose a compact set L as to satisfy

(2.4.3) /      G+dM<e   and   c({Hau Hr)nL) <-K(Hau HT) + e.
Jm-l

Then, it follows from (2.4.1) and (2.4.3) that

n - K(Dk) = c(Dk) < c{Dk r\L) + e< c((Ha u Hx) nL) + 2e< -k{H0 U Hx) + 3e

for sufficiently large k . Since e < n/2, this contradicts (2.4.2).

Note that the above arguments imply that a = x does not occur.

Case 2. The four points a(t0(o)), z(tx(r)), a(tx(o)), t(/0(t)) lie on dK in

this order. Let Ha be the open half plane in M-K bounded by er|(-oo,/0(er)],

er|[r,(er) ,oo) and by a subarc of dK suchthat t((-oo,?0(t))) c Ha and let //.

be defined similarly. Then, it follows from (1.3) and (1.4) that c(Hx) < -zc(/7T)

and c(Ho - Hr) < n - k(Ho - Hr). Hence,

(2.4.4) c(HaUHr)<-K(HaUHr).

Let e e (0,n/4) be a fixed number, and let L be a compact domain such

that

/      G+dM<e.
J M-L

Then, it follows from (2.4.1) that

n - k(D[) = c(D[) < c(D'. r\L) + e< c((H U H) f\L) + 2e
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Figure 2.

for sufficiently large k . This means that c(Ha U //T) is finite. Therefore,

7i - K(D'k) < c(Ha U Hr) + 3e< -k{Ho U Hr) + 3e.

for all sufficiently large k . Moreover, since ok , xk tend to a ,x,

limK(D'k) = K(HaUHT).

This contradicts e < tt/4 . This completes the proof of Lemma 2.4.

Proof of Theorem A. Let {p(} be an arbitrary divergent sequence of points

of M and let K be a compact convex domain as obtained in Lemma 2.3.

In view of Lemmas 2.2 and 2.4 we may assume that A (K) and A1 (K) are

nonempty for all i. Let y¡,p, be two rays bounding D (K). If {p,} contains

a subsequence {p.} such that both {yA and {p } converge to straight lines,

then it follows from Lemmas 1.2 and 2.1 that

limmeasM   ) = 2?z.

Now assume that {y(} does not contain any convergent subsequence. For any

i, let er, t; be the rays as defined in the proof of Lemma 2.4 and let Di be the

open half plane bounded by y,,er|[0,i0(cr;)), er(.|[/((cr(.) ,oo) and by a subarc of

dK such that Df. c D (K) - K . Without loss of generality we may assume that

Z)( does not contain t.([/, (t;) , oo)). Then there are no rays emanating from pt

in Di. By a discussion similar to the proof of Lemma 2.4, it follows that

(2.A.1) c(Di) = n-K(Di).

Since each er intersects K, there is a subsequence {er } of {ct(} converging

to some straight line a intersecting K. Let H be the open half plane in

M-K bounded by cr|(-oo,i0(er)], a\[tx(o),oo) and a subarc from a(tx(a))

to a(tQ(o)) of dK. Since {y } does not contain any convergent subsequence,

Dj tends to H. By (1.4),

(2.A.2) c{H)<-k(H).
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For any positive number e , there exists a compact set L such that

(2.A.3) [      G+dM<e.
Jm-l

Then it follows from (2.A.1) and (2.A.3) that

n - k(Dj) = c(Dj) < c{Dj r\L) + e< c{HnL) + 2e

for all sufficiently large j. This means that c(H) is finite. Hence, by (2.A.2),

n - k(Dj) < c(H (~\L) + 2e< c{H) + 3e < -k{H) + 3e

for all sufficiently large j. On the other hand, if we denote by \p. the inner

angle of Z>   at p , then

lim[K{Dj)-n + tp-j] = K(H).

Thus \p. < 4e for all sufficiently large j. Thus the argument above applies to

pi and implies that the inner angle between pi and t( at pi also tends to zero.

From Lemma 1.2 the angle between at and t. at pi tends to zero as ¡'-»oo.

This completes the proof of Theorem A.

3. The case when M has more than one end

The aim of this section is to prove Theorem B. We assume that M has k

ends and admits total curvature.

Proof of Theorem B. Let K be a compact domain and U¡ a tube as in §0. Let

Af; be a complete open surface with one end such that there exists an isometric

embedding z(: Ut. u K —► M¡ and M¡ - ii{U¡ U K) consists of k - 1 open disk

domains. Then the Gauss-Bonnet Theorem implies

(3.B.1) si(M) = 2nX(Mi)-c(Mi).

Now, without loss of generality we may assume that K contains a com-

pact domain K' such that M-K' is a disjoint union of k tubes and that

d(M - K,K') is greater than the length of dK'. Then each minimizing

segment joining two points in Ui is contained in K u U¡. For any p in U¡,

set

Ap(i):={veAp;yv([0,oo))cU¡UK}

and let A. be the set of all unit vectors at z((p) tangent to rays emanat-

ing from it(p) in Af(.. It follows that the restriction of differential mapping

di¡\A (i):A (i) —* Ai    is bijective. In particular we have

meas(^(z')) = meas(^.j,)

for all p in U¡.  It follows from the construction of Mi that Ap(i) c A   =

Ap(i)uAp(K) and

(3.B.2) meas(^(.   ) < meas(Ap) < meas(A¡   ) + meas(Ap(K))
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for all p in U¡. On the other hand, for a divergent sequence {p } of points in

Ui, Theorem A and Lemma 1.2 imply

(3.B.3) lim measM „ ) = min{2nx{Mi) - c{M.),2n}
j—too 'pi

and

(3.B.4) lim meas(An (K)) = 0.
j—»oo Pi

Therefore, by (3.B.1), (3.B.2), (3.B.3), and (3.B.4),

lim meas(^   ) = lim meas(/í     ) = min{s(A/),2n).
J—.00 Pj j—»oo 'Pi

This completes the proof of Theorem B.
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