Differentiable restrictions of real functions
Author:
Jack B. Brown
Journal:
Proc. Amer. Math. Soc. 108 (1990), 391-398
MSC:
Primary 26A24
DOI:
https://doi.org/10.1090/S0002-9939-1990-0987607-1
MathSciNet review:
987607
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Some new theorems about differentiable, continuously differentiable, or highly differentiable restrictions of continuous and measurable real functions are presented.
- [1] S. Agronsky, A. M. Bruckner, M. Laczkovich, and D. Preiss, Convexity conditions and intersections with smooth functions, Trans. Amer. Math. Soc. 289 (1985), no. 2, 659–677. MR 784008, https://doi.org/10.1090/S0002-9947-1985-0784008-9
- [2] Jack B. Brown and Karel Prikry, Variations on Lusin’s theorem, Trans. Amer. Math. Soc. 302 (1987), no. 1, 77–86. MR 887497, https://doi.org/10.1090/S0002-9947-1987-0887497-6
- [3] A. M. Bruckner, J. G. Ceder, and Max L. Weiss, On the differentiability structure of real functions, Trans. Amer. Math. Soc. 142 (1969), 1–13. MR 259037, https://doi.org/10.1090/S0002-9947-1969-0259037-5
- [4] F. M. Filipczak, Sur les fonctions continues relativement monotones, Fund. Math. 58 (1966), 75–87 (French). MR 188381, https://doi.org/10.4064/fm-58-1-75-87
- [5] K. M. Garg, On level sets of a continuous nowhere monotone function, Fund. Math. 52 (1963), 59–68. MR 143855, https://doi.org/10.4064/fm-52-1-59-68
- [6] V. Jarník, Sur l'extension du domaine de définition des fonctions d'une variable qui laisse intacte la dérivabilité de la fonction, Bull. Int. Acad. Sci Bohême, (1923).
- [7] -, Sur les nombres dérivés approximatifs, Fund. Math. 22 (1934), 4-16.
- [8] M. Laczkovich, Differentiable restrictions of continuous functions, Acta Math. Hungar. 44 (1984), no. 3-4, 355–360. MR 764629, https://doi.org/10.1007/BF01950290
- [9] S. Marcus, Sur les fonctions continues qui ne sont monotones en aucun intervalle, Rev. Math. Pures Appl. 3 (1958), 101–105 (French). MR 107680
- [10] S. Minakshisundaram, On the roots of a continuous non-differentiable function, J. Indian Math. Soc. (N.S.) 4 (1940), 31–33. MR 1827
- [11] Michał Morayne, On continuity of symmetric restrictions of Borel functions, Proc. Amer. Math. Soc. 93 (1985), no. 3, 440–442. MR 773998, https://doi.org/10.1090/S0002-9939-1985-0773998-1
- [12] K. Padmavally, On the roots of equation 𝑓(𝑥)=𝜉 where 𝑓(𝑥) is real and continuous in (𝑎,𝑏) but monotonic in no subinterval of (𝑎,𝑏), Proc. Amer. Math. Soc. 4 (1953), 839–841. MR 59341, https://doi.org/10.1090/S0002-9939-1953-0059341-3
- [13] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189–212. MR 379766, https://doi.org/10.1007/BF01901760
- [14] Stanisław Saks, Theory of the integral, Second revised edition. English translation by L. C. Young. With two additional notes by Stefan Banach, Dover Publications, Inc., New York, 1964. MR 0167578
- [15] W. Sierpinski and A. Zygmund, Sur un fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316-318.
- [16] Hassler Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89. MR 1501735, https://doi.org/10.1090/S0002-9947-1934-1501735-3
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A24
Retrieve articles in all journals with MSC: 26A24
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0987607-1
Keywords:
Differentiable restrictions,
,
perfect set
Article copyright:
© Copyright 1990
American Mathematical Society