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DIFFERENTIABLE RESTRICTIONS OF REAL FUNCTIONS

JACK B. BROWN

(Communicated by R. Daniel Mauldin)

Abstract. Some new theorems about differentiable, continuously differentiable,

or highly differentiable restrictions of continuous and measurable real functions

are presented.

I. Introduction

When we say that a real function with domain D is differentiable (abbrevi-

ated D ) we mean that D ç R has no isolated points and that the limit

f(x) = lim(f(y)-f(x))/(y-x)

exists for every x in D (the limit is assumed to be finite and is taken as

y —> x with y e D). If f is continuous, we say that /is C1 . As usual,

we say / is Dn if it is «-times differentiable on D, and that / is C" if the

«th derivative p"' of / is continuous, and that / is C°° if / is infinitely

differentiable on D. If we want to allow +00 or -00 as the value of the limit

f{x), we say that / is differentiable in the extended sense, abbreviated UD "

with the quotation marks ( / is required to be continuous). If / is " D " and

the extended real-valued function f is continuous in the extended sense, we

say that / is " C ". We say f is continuous in the extended sense if it is

continuous in the ordinary sense at each x at which f{x) is finite, and if

f{x) = +00, then for every B > 0, there exists ô > 0 such that for every y

in D with \x - y\ < ô, /{y) > B (similar convention if f(x) = -00). We

say that / is " D" " if / is £>""' and /("_1) is "D1 ", and if the extended

real-valued function /     is continuous in the extended sense, we say that / is

C
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392 JACK B. BROWN

These properties are of course related as follows:

C°° -♦-►   C2 -> D2 -► "D2"   -♦    C1-*£>'^"£>'"   -»C

(I) \ / \ /

The first result of the type we are considering would be the following.

Theorem 1.1. For every continuous f: [0,1] —► R, there exists a perfect subset

P of'[0,1] such that f\P is
(1) monotonie

and

(2) D1 .

We don't know when this result was first discovered, but it follows from

Lebesgue's Differentiability Theorem [ 14] together with the monotonicity results

of Minakshisundaram [10], Padmavally [12], Marcus [9], and Garg [5]. The set

P in the conclusion of Theorem 1 cannot be made to have positive measure

because of the existence of the almost nowhere approximately differentiable

continuous functions of Jarnik [7].

In order to improve the conclusion of Theorem 1 (i.e. to obtain that f\P

is C1 or D ), it is clear that one needs similar theorems for functions with

domains arbitrary perfect sets other than [0,1]. A theorem of this type for

monotonie restrictions was established by Filipczak in 1966 [4].

Theorem 1.2. If P is a perfect subset o/[0,l], then for every continuous f:P—*

R, there exists a perfect subset Q of P suchthat f\Q is monotonie.

Then, a " D1 " restriction result was established by Bruckner, Ceder, and

Weiss in 1969 [3].

Theorem 1.3. If P is a perfect subset of [0,1], then for every continuous f:P—>

R, there exists a perfect subset Q of P such that f\Q is

(1) monotonie

and
(2) "Dl " {and"sort of C°°").

In order to obtain the "sort of C°° " conclusion, we have to adopt the con-

vention that if we ever reach the stage where we have a perfect set Q such that

{f\Q){n) is identically +oo (or identically -oo), then (/|Q)("+1) exists and is

identically 0.

Morayne gave a simplified proof of Theorem 1.3 in [11].

Theorem 1.1 was drastically improved by Laczkovich in 1984 [8] and a sec-

ond remarkable result was obtained by Agronsky, Bruckner, Laczkovich, and

Preissin 1985 [1].

Theorem 1.4. If P is a perfect subset of [0,1] and P is of positive measure, then

there exists a perfect subset Q of P, such that f\Q is

(1) monotonie,
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DIFFERENTIABLE RESTRICTIONS OF REAL FUNCTIONS 343

(2) C°°   ( relative to Q) [8], and

(3) extendable toa C1 g :   [0,1]-^ R[l].

Of course, once you get f\Q D , it follows that f can be extended to a

D g: [0,1] —» i?, because every Z> function with domain a perfect set is so

extendable (see [6] or [13]). However, C functions with perfect domains are

not necessarily extendable to C functions g : [0,1] —► R. In order to obtain

(3) of Theorem 1.4, it was necessary to show that the conditions of the "Whitney

Extension Theorem" [ 16] were satisfied.

In §11, we prove a theorem which essentially adds a condition similar to (3)

of Theorem 1.4 to Theorem 1.3 for continuous functions with domains perfect

sets. In order to do this, we prove a version of the Whitney Extension Theorem

for " C " extensions. We discuss the example given in [ 1 ] which shows that the
1 2

C g of Theorem 1.4 (3) cannot be made D , even if you just want an infinite

subset Q of P. We show by contrast that you can always get an infinite

subset Q of P such that f\Q is extendable to a " C2 " g : [0,1] — R, even for

arbitrary /.

In §111, we give a brief discussion of the applications of the above results to

measurable functions, present an example, and raise a question which may be

of interest to set theorists as well as real analysts.

II. Continuous functions

The "Whitney Extension Theorem" [ 16] is a theorem which gives conditions

under which functions / from subsets D of Rm into Rn are extendable to

C functions g : Rm —* Rn. The basic case, where m — n = k = 1 and D is

perfect, was used in the proof of part (3) of Theorem 1.4, and the condition in

that case is essentially that / be "uniformly differentiable". In order to prove

Theorem 2.2, we will need the following " C " version of Whitney's theorem.

Theorem 2.1. Suppose P is a perfect subset o/[0,l] and f:P^R is "J51 ",

with f(x) = +00 for every x e P, and suppose furthermore that for every

B > 0, there exists S > 0 such that if x and y e P and 0 < \x - y\ < 5,

then (f(x) - f(y))/(x - y) > B. Then it follows that f is extendable to a
"Cl"g:[0,l]^R.

Proof. Extend / as follows. Suppose (x,y) is an open interval contiguous

to P. Let S be the semicircle with diameter (y - x)/3 which lies above its

horizontal diameter, which has left endpoint (x, f(x)). Let T be the semicircle

with diameter (y - x)/3 which lies below its horizontal diameter, which has

right endpoint (y, f{y)). Let L be the line which is tangent to S at a point A

and tangent to T at a point B . f is extended to g on [x ,y] so that g = S

between (x,f(x)) and A, g = L between A and B, and g = T between B

and (y ,f{y)). If 0 £ P, then let y = min(P) and do the same as above with

(x, f(x)) = (0,0). A similar technique will handle the case where 1 ^ P. The

extension g is clearly " Dl " on the complement Pc of P. We will show that
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g'{x) = +00 if x e P. Let x e P. If x is the endpoint of an open interval in

Pc, the one-sided derivative of g at x from that direction is clearly +00 .

Assume without loss of generality that x is a limit point of P from the right.

Suppose B > 0. Let ó > 0 be such that ( 1 ) if u and v are elements of P with

0 < \u - v\ < ô, then (/(w) - f(v))/(u - v) > 1 , (2) if v is an element of P

with 0 < \v - x\ < ô , then (f(v)) - f(x))/(v -x)> 35/2, and (3) x + ôeP.

Suppose 0 < y - x < á . IfyeP, (f(y) - f(x))/(y - x) > 35/2 > 5.
If y e P, there are elements u < v of P such that y e (u,v) ç Pc. Let

h = f{v) - f{u). It is clear from the geometry that every point of g with

abscissa in (u, v) lies above the line from (x, f(x)) to (v , f(v) - h/3), which

has slope at least §(35/2) = 5. Thus, (/(y) - f{x))/(y - x) > B, and the

theorem if proved.

The following is an improvement of Theorem 1.3 which is in the spirit of (3)

of Theorem 1.4.

Theorem 2.2. If P isa perfect subset of [0,1], then for every continuous f:P—>

R, there exists a perfect subset Q of P such that f\Q is extendable to a

"C["g:[0,l]->R.

Proof. Get the perfect set Qx c P such that f\Qx is monotonie and "£> ". It

follows from Borel measurability of (f\Qx)' that there is either a perfect subset

Q2 of Qx suchthat f\Q2 is D] or there is a perfect subset Q2 of Qx suchthat

(/IÖ2)' is identically +00 (or identically -00). In the first case, the theorem

follows from Lemma 20 of [1]. Assume the second case holds and that (f\Q2)'

is identically +00.

As Step 1, pick two points x0 and xx of Q2 such that (f{xx) - f(xQ))/

(xx - x0) > 1. Pick disjoint subintervals 70 and /, of [0,1] having jc0 and

xx , respectively, in their interiors such that if x e Q2 n IQ and y e Q2 n Ix ,

then (f(y)-f(x))/(y-x) > 1. Pick ôx to be less than the distance between IQ

and /, .

Suppose n is a positive integer and that xs and Is have been picked for all n-

term dyadic sequences s, and that 6n has been picked. For each «-term dyadic

sequence s, pick two points xs 0 and xs , of Q2^fs (interior to Is ) such that

(f(xs 1) _ f(xs o))/(xj 1 ~ xs 0) > " + 1 • Pick disjoint subintervals Is 0 and

Is j of Is, having length less than àJ2, having xs 0 and xs , , respectively,

in their interiors, and such that if 5 e Q2 n Is 0 and y e Q2 n Is x , then

(f{y) - f{x))/{y - x) > n + 1. Pick ôn+x > 0 to be less than the distance

between any two of the intervals in {Is : s. is an (n + 1 )-term dyadic sequence}.

00

Q = P| Li{Is : s is an «-term dyadic sequence}

n=\

is a subset of Q2 which satisfies the hypothesis of Theorem 2.1, so Theorem

2.2 is proved.
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The following theorem was proved in [1] to show that condition (3) of The-

orem 1.4 was sharp.

Theorem 2.3. [1] For every e > 0, there exists a perfect subset P of [0,1] of

measure at least 1- 6 and a continuous f: P —► R such that

(a) {x e P: f(x) = g{x)} is finite for every D2g: [0,1] -> R,

(b) {x e P: f{x) = g(x)} has no bilateral limit point for every "D " g:

[0,l]-5,

and

(c) {x e P: f(x) = g{x)} has at most finitely many limit points for every

"D2"g:[0,l]^R.

Actually, only (a) was stated in [1], but it was proved that if xx,x2, ... is

a monotone decreasing sequence on which / = g, and x is the limit of the

sequence, then

g"{x) = 2 lim (f(x , - f(x))/(xn - x)2 = +oo.
n—>oo " "

It is also clear that if one considers xx,x2, ... to be increasing, it can be argued

that g"(x) = -oo. Therefore, (b) follows. Furthermore, if each xn is a limit

point of the set on which / = g, it was shown in [1] that g'(x) = g'(xn) = 0

for each n , so that g"{x) = ±oo would be impossible and (c) follows.

In contrast to Theorem 2.3, the following theorem holds.

Theorem 2.4. If A is a subset of [0,1] of positive outer measure, then for every

f:[0,l]—>R, there exists an infinite closed subset B of A such that f\B is

extendable to a monotonie " C2 " g: [0,1] —► R.

Proof. Suppose A and / are as in the hypothesis. It follows from a theorem of

Kolmogorov and Vercenko (see Chapter IX of [14]) that there exists an x e A

and a sequence xx ,x2, ... from A\{x} converging to x such that the sequence

{(/(■*„) ~ f(x))/(x„ - x)} converges to a finite number m. Assume without

loss of generality that x = f(x) = 0 and {xn} is decreasing. Also assume

that {f(xn)/xn} is decreasing and that m = 0 (we may get monotonicity of

{f(xn)/x } by taking a subsequence, and we can change to one of the functions

±(mt - f(t)), if necessary). If {f(xn)/xn} is identically zero, then {f(xn)} is

identically zero, and the theorem follows immediately, so we are assuming that

{f(xn)/xn} is strictly decreasing. By taking a further subsequence, we may also

assure that {f{xn)/xn} converges to some (possibly infinite) value m .

As Case I, assume m is finite. By taking subsequences we could also assure

that for each « ,
oo

¿ 'f(xt)lxpn < 1/«.
i=n+\

Then, by taking further subsequences we can arrange things so that for each «

h   _ f(xn) - f(xn+x)

Xn ~Xn+\
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is sufficiently close to f{xn)/xn so that

(1) «,, «2, ...  is still decreasing with limit 0.

(2) lim,,^ «„/*„ = «/ and

(3) for each «, EZn+i hi/(x„ ~ xn+0 < lln •
Define u: [0,1] -► R so that u(t) = h if xn+x <t<xn and u(0) = 0. We

don't care what happens between xx and 1, so we will assume for notational

convenience that x, = 1 . Notice that if U(x) = f0x u(t)dt, then U{xn) = f(xn)

for each « . However, U is far from " D " because u is a step function. Now,

"jiggle" u by rotating each horizontal piece of u counterclockwise a bit about

its center to get the function v defined by

v(xn) = hn + [(hn-hn+x)-(hn+x-hn+2) + (hn+2-hn+3)----]

v linear on each [xn+x ,xn], and v(0) = 0.

It can be checked that the endpoints match up, so that v is continuous and

if V{x) = Jq v(t)dt, we still have V(xn) = f(xn) for each « . Furthermore,

since

Xn Xn      ~   Xn

it follows from (3) that ^mn^00v(xn)/xn = 2m . Since v is linear on each

[x .. ,x ], it follows that v'(0) = 2m . v is constant on each {x ,. ,x„) and

has value
2«„

K+x - hn+2 +

Xn~Xn+l

K+\ - kn+2 +

Xn ~ Xn+l

so it follows from (3) that liml^0v'(t) = 2m {v' does not exist at xx ,x2, ... ).

Now we "smooth out the corners" on ». At each xn(n > 2), consider an

xn+x < a < xn < b < xn_x where (b - a) < \ min(x„+1 - xn ,xn - xn_x) and

c = xn = (a + b)/2 . Let e = \v'(a) - v'(b)\. We may replace w|[a,c] by a C

function q : [a, c] —> R such that

(4) q{a) = v(a),q(c) = v(c),

(5) q'(a) = v'(a),q'(c) = v'(b),

(6) fiq(t)dt = £v(t)dt, and
(7) \q'(t) - v'{t)\ < 2 e for every te[a,c).

Now, let w be the function which consists of all such replacements q to-

gether with the part of v which is not replaced, and let g(t) = ftQw{x)dx.

Equations (4) and (5) make w C on (0,1], and (7) makes lim(^0u/(i) =

liml^0v'(t) = 2m', so w is actually C on [0,1], and g is C on [0,1]

in this case. Equations (4) and (6) keep g(xn) = /(•*„) for every «, and it is

clear that g is monotonie.

As Case II, assume m — +oo. Proceed exactly as in Case I, and at the

end we will have w continuous on [0,1], C1 on (0,1], and (7) will make

lim^0 w'(t) = lim(^0v'(0) = +oo. So w is"C'"on [0,1] and g is " C2 "

on [0,1] and monotonie, and the theorem is proved.
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Note 2.5. In the above proof, we assumed that xx,x2, ... was decreasing. It

actually follows from the theorem of Kolmogorov and Vercenko that xx,x2, ...

can be made to be increasing or decreasing (at your choice). Thus, the set where

f = g (for a " C " g ) can be made to have as many limit points from the left

and as many limit points from the right as you want, as long as you only want

finitely many of each and you don't want bilateral limit points.

III. Measurable functions

Variations on Lusin's theorem for functions measurable with respect to var-

ious a-algebras were considered in [2]. The a -algebras of interest were L (the

Lebesgue measurable sets), U (the universally measurable sets), 5 (the Borel

measurable sets), (s) (the Marczewski measurable sets), Bw (the sets with the

Baire property in the wide sense), and Br (the sets with the Baire property in

the restricted sense). See [2] for the appropriate definitions. These cr-algebras

are related as follows:

U

/
5

\
B,

It follows from Theorem 2.2 that if /: [0,1] —► R is L-, (s)-, or Bw-

measurable, then there exists a perfect subset Q of [0,1] such that f\ Q is

extendable to a " C1 " g: [0,1] -> R. It follows from Theorem 4.1 of [3] that

if / is Î7- or 5r-measurable, then every perfect subset P of [0,1] has a per-

fect subset Q such that f\Q is extendable to a " C1 " g: [0,1] -» R. In fact,

( s )-measurability characterizes the functions / for which this is true.

It is also clear from Lusin's Theorem that if /: [0,1] —► R is L-measurable

then there exists a perfect subset Q of [0,1] such that the stronger conclusions

of Theorem 1.4 hold. By contrast consider the following.

Example 3.1. There exists a Bw -measurable /: [0,1] —► R with no D restric-

tion to any perfect subset of [0,1].

Proof. Let g : [0,1 ] -+ R be a strictly increasing continuous function with

g(0) = 0, g{\) - \ , and such that g'{x) = +oo at each element x of a dense

Gs subset M of [0,1]. Let « : [0,1] -► [2,3] be a "Sierpinski-Zygmund [15]

function" which has no continuous restriction to any set of cardinality c. Let

f(x) = g(x) if x e M, and let f{x) = h{x) if x e Mc. f clearly satisfies

the requirement.

Problem 3.2. Does there exist a 5f-measurable (or even an ( 5 )-measurable)

/: [0,1] —► R which has no Dl restriction to any perfect subset of [0,1]? It is

L

/

\
(s)

/

\
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shown in Example 2 of [2] that CH implies the existence of a 5r-measurable

f: [0,1] —^ R which has no continuous restriction to any set of positive outer

measure, but we do not see how to use this to answer this question.
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