Wiener transformation on functions with bounded averages
HTML articles powered by AMS MathViewer
- by Yong Zhuo Chen and Ka-Sing Lau
- Proc. Amer. Math. Soc. 108 (1990), 411-421
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990416-0
- PDF | Request permission
Abstract:
The Wiener transformation (integrated Fourier transformation) on the space ${B^2} = \{ f:\left \| f \right \| = {\sup _{T \geq 1}}{(\frac {1}{{2T}}{\int _{ - T}^T {\left | f \right |} ^2})^{1/2}} < \infty \}$ is studied.References
- J. Bass, Fonctions de corrélation, fonctions pseudo-aleatoires et applications, Masson, Paris, 1984.
- Jean-Paul Bertrandias, Opérateurs subordinatifs sur des espaces de fonctions bornées en moyenne quadratique, J. Math. Pures Appl. (9) 52 (1973), 27–63. MR 399928
- Arne Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 1–32. MR 182839
- Yong Zhuo Chen and Ka-Sing Lau, Some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), no. 2, 255–278. MR 1001460, DOI 10.1016/0022-1236(89)90097-9
- Yong Zhuo Chen and Ka-Sing Lau, Harmonic analysis on functions with bounded means, Commutative harmonic analysis (Canton, NY, 1987) Contemp. Math., vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 165–175. MR 1002596, DOI 10.1090/conm/091/1002596
- José García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), no. 3, 499–513. MR 1002462, DOI 10.1112/jlms/s2-39.3.499
- G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), no. 1, 565–606. MR 1544927, DOI 10.1007/BF01171116
- Ka-Sing Lau, Extension of Wiener’s Tauberian identity and multipliers on the Marcinkiewicz space, Trans. Amer. Math. Soc. 277 (1983), no. 2, 489–506. MR 694372, DOI 10.1090/S0002-9947-1983-0694372-5
- Ka Sing Lau and Jonathan K. Lee, On generalized harmonic analysis, Trans. Amer. Math. Soc. 259 (1980), no. 1, 75–97. MR 561824, DOI 10.1090/S0002-9947-1980-0561824-5
- Norbert Wiener, Collected works with commentaries. Vol. II, Mathematicians of Our Time, vol. 15, MIT Press, Cambridge, Mass.-London, 1979. Generalized harmonic analysis and Tauberian theory; classical harmonic and complex analysis; Edited by Pesi Rustom Masani. MR 554238
- Robert R. Nelson, The spaces of functions of finite upper $p$-variation, Trans. Amer. Math. Soc. 253 (1979), 171–190. MR 536941, DOI 10.1090/S0002-9947-1979-0536941-8
- Norbert Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), no. 1, 117–258. MR 1555316, DOI 10.1007/BF02546511
- L. C. Young, Some new stochastic integrals and Stieltjes integrals. I. Analogues of Hardy-Littlewood classes, Advances in Probability and Related Topics, Vol. 2, Dekker, New York, 1970, pp. 161–240. MR 0286970
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 411-421
- MSC: Primary 42A38
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990416-0
- MathSciNet review: 990416