Zeros of differentials along one-fibered ideals
Authors:
R. Fedder, C. Huneke and R. Hübl
Journal:
Proc. Amer. Math. Soc. 108 (1990), 319-325
MSC:
Primary 13H10
DOI:
https://doi.org/10.1090/S0002-9939-1990-0990421-4
MathSciNet review:
990421
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let be a complete local domain containing the rationals. If
is a one-fibered ideal then there is a constant
, depending only on
and
, such that if
and
, then there exists a derivation
such that
.
- [C] D. Cutkosky, On unique and almost unique factorization of complete ideals II, (to appear in Inventiones Math.).
- [F]
R. Fedder, Rational singularity implies
-injective type for graded Cohen-Macaulay rings of dimension 2, (in preparation).
- [HH] Melvin Hochster and Craig Huneke, Tight closure, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 305–324. MR 1015524, https://doi.org/10.1007/978-1-4612-3660-3_15
- [KD] Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975
- [KW] Ernst Kunz and Rolf Waldi, Regular differential forms, Contemporary Mathematics, vol. 79, American Mathematical Society, Providence, RI, 1988. MR 971502
- [Me] Stephen McAdam, Asymptotic prime divisors, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR 722609
- [NR] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145–158. MR 59889, https://doi.org/10.1017/s0305004100029194
- [P] H. Prüfer, Untersuchungen über Teilbarkeitseigenschaften in Körpern, J. Reine Angew. Math. 168 (1932), 1-36.
- [R1] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961), 24–28. MR 126465, https://doi.org/10.1112/jlms/s1-36.1.24
- [R2] D. Rees, Valuations associated with ideals. II, J. London Math. Soc. 31 (1956), 221–228. MR 78971, https://doi.org/10.1112/jlms/s1-31.2.221
- [S] Judith D. Sally, One-fibered ideals, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 437–442. MR 1015533, https://doi.org/10.1007/978-1-4612-3660-3_24
- [Sa] P. Samuel, Some asymptotic properties of powers of ideals, Ann. of Math. (2) 56 (1952), 11–21. MR 49166, https://doi.org/10.2307/1969764
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H10
Retrieve articles in all journals with MSC: 13H10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0990421-4
Keywords:
One-fibered ideal,
differentials
Article copyright:
© Copyright 1990
American Mathematical Society