SOME PROPERTIES OF K-SEMISTRATIFIABLE SPACES

T. MIZOKAMI

(Communicated by Dennis Burke)

Abstract. We study spaces admitting semistratification and k-semistratifications with (CF) property. The class of k-semistratifiable spaces with (CF) property lies between the class of Lašnev spaces and that of k-semistratifiable spaces, and really differs from the classes of stratifiable spaces and N-spaces.

1. Introduction

All spaces are assumed to be regular Hausdorff topological spaces. The letter \(\tau\) denotes the topology of a space \(X\). We denote by the letter \(\omega\) the set of all positive integers.

In his paper [8], Lutzer introduced the class of k-semistratifiable spaces, which lies between the class of stratifiable spaces in the sense of Borges [1] and Ceder [2] and the class of semistratifiable spaces introduced by Michael and studied by Creede. The class of \(\sigma\)-spaces introduced by Okuyama lies between that of stratifiable spaces and that of semistratifiable spaces. In this paper, we consider the limited classes of k-semistratifiable and semistratifiable spaces with (CF) property defined below. We give a few characterizations of Lašnev spaces in terms of k-semistratifiable spaces and CF families which are introduced here.

Throughout this paper, \(\sigma\)-spaces are spaces with a \(\sigma\)-discrete network or equivalently, \(\sigma\)-closure-preserving network, and N-spaces are spaces with a \(\sigma\)-locally finite \(k\)-network. Stratifiable spaces are spaces with the stratification. As for the definition of stratifications, refer to Borges [1].

2. K-SEMISTRATIFIABLE SPACES WITH (CF) PROPERTY

We state the original definition of k-semistratifiable spaces.

Definition 1 (Lutzer [8]). A space \(X\) is called a k-semistratifiable space if there exists a function \(S: \omega \times \tau \rightarrow \{\text{closed subsets of } X\}\) such that:

(a) For each \(U \in \tau, U = \bigcup\{S(n, U) : n \in \omega\}\).

(b) If \(U, V \in \tau\) and \(U \subseteq V\), then \(S(m, U) \subseteq S(m, V)\) for each \(m\).

Received by the editors January 23, 1989 and, in revised form, March 27, 1989.
Key words and phrases. semistratifiable, Lašnev, N-spaces.

©1990 American Mathematical Society
0002-9939/90 $1.00 + $.25 per page
(c) If \(C \subset U \in \tau \) with \(C \) compact, then \(C \subset S(m, U) \) for some \(m \). (We call \(S \) a \(k \)-semistratification of \(X \).

Definition 2 ([10, Definition 3.1]). A family \(\mathcal{U} \) of subsets of a space \(X \) is called **finite on compact subsets of \(X \)**, briefly \(\text{CF in } X \), if \(\mathcal{U}/K \) is a finite family for any compact subsets \(K \) of \(X \).

Definition 3. A semistratification or \(k \)-semistratification \(S \) of a space \(X \) is called to have (CF) property if the following condition (CF) is satisfied:

(CF) For each \(n \in \omega \), \(\{S(n, U) : U \in \tau\} \) is \(\text{CF in } X \).

A space having \(S \) with (CF) property is called a semistraifiable or a \(k \)-semistratifiable space with (CF) property, respectively.

Theorem 1. If a space \(X \) has a \(\sigma \)-HCP (= hereditarily closure-preserving) \(k \)-network, then \(X \) is a \(k \)-semistratifiable space with (CF) property.

Proof. Let \(\bigcup \{\mathcal{H}_n : n \in \omega\} \) be a \(k \)-network for \(X \), where, for each \(n \), \(\mathcal{H}_n \subset \mathcal{H}_{n+1} \) and \(\mathcal{H}_n \) is an HCP family of closed subsets of \(X \). For each \((n, U) \in \omega \times \tau \), let

\[
S(n, U) = \bigcup \{H \in \mathcal{H}_n : H \subset U\}.
\]

Then it is easily seen from [10, Proposition 3.2] that \(S \) is a \(k \)-semistratification with (CF) property.

Example 1. There exists a stratifiable, \(k \)-semistratifiable space with (CF) property, but does not have a \(\sigma \)-HCP \(k \)-network.

Proof. Let \(Y \) be a non-metrizable Lašnev space which has no \(\sigma \)-locally finite \(k \)-network. (For example, let \(Y \) be the quotient space obtained from \(\bigoplus \{S_\alpha : \alpha < \omega_1\} \) by identifying all the limit points, where each \(S_\alpha \) is the convergent sequence with its limit point.) Then by [6] the product space \(X = Y \times [0, 1] \) has no \(\sigma \)-HCP \(k \)-network. \(X \) is obviously a stratifiable space. By Theorem 5, stated later, \(X \) is a \(k \)-semistratifiable space with (CF) property.

Theorem 2. For a space \(X \), the following are equivalent:

1. \(X \) is a Lašnev space.
2. \(X \) is a Fréchet, \(k \)-semistratifiable space with (CF) property.
3. \(X \) is a Fréchet space which has a \(\sigma \)-CF pseudobase.

Proof. (1) \(\rightarrow \) (2) follows from [3] and Theorem 1.

(2) \(\rightarrow \) (3). Let \(S \) be the \(k \)-semistratification of \(X \) with (CF) property. Then

\[
\bigcup \{\{S(n, U) : U \in \tau\} : n \in \omega\}
\]

is a \(\sigma \)-CF pseudobase of \(X \).

(3) \(\rightarrow \) (1) follows from [10, Theorem 4.1, (9)].

Corollary. A space \(X \) is metrizable if and only if \(X \) is a first countable, \(k \)-semistratifiable space with (CF) property.

We notice that a Lašnev space cannot be characterized to be a Fréchet space with a \(\sigma \)-HCP “pseudobase” [5]. For the next example, we prepare a lemma.
Lemma. If a space X has a σ-HCP k-network \mathcal{H} of closed subsets of X, then $X = X_1 \cup X_2$, where X_1 is a σ-discrete closed subspace and X_2 is an \mathcal{H}-space such that for each $p \in X_2$, \mathcal{H} is σ-locally finite at p in X.

Proof. Let $\mathcal{H} = \bigcup\{\mathcal{H}_n : n \in \omega\}$, where for each n, $\mathcal{H}_n \subset \mathcal{H}_{n+1}$ and \mathcal{H}_n is an HCP family of closed subsets of X. Let

$$X_1 = \{p \in X : \bigcap\{H \in \mathcal{H}_n : p \in H\} \text{ is a finite subset for some } n\}.$$

Then by the same argument as in [11, Theorem 3.6], we can show that X_1 is a countable union of discrete closed subsets of X and $X_2 = X - X_1$ has the required property.

Example 2. There exists a stratifiable space which has no σ-HCP k-network.

Proof. For each $\alpha < \omega_1$, let T_α be the copy of the subspace $T = \{(x, y) : 0 \leq x, y \leq 1\}$ of \mathbb{R}^2 and $f_\alpha : T \to T_\alpha$ its homeomorphism. Let X be the quotient space obtained from $\bigoplus\{T_\alpha : \alpha < \omega_1\}$ by identifying $\{f_\alpha((x, 0)) : \alpha < \omega_1\}$ for each x with $0 < x < 1$. Since X is dominated by metric spaces, X is a stratifiable space [1, Theorem 7.2]. If X has a σ-HCP k-network \mathcal{H}, then by the above, there exists a point $p = f((x, 0))) \in X$ such that \mathcal{H} is σ-locally finite at p in X, where $f : \bigoplus T_\alpha \to X$ is the quotient mapping. But, by [7, Remark 2] this is a contradiction.

Example 3. There exists a k-semistratifiable space which does not have (CF) property.

Proof. Let X be the same space as in [2, Example 9.2]. Then X is a first countable, non-metrizable stratifiable space. By the Corollary to Theorem 2, X has no k-semistratification with (CF) property.

From the argument as in Theorem 1, the following is easily seen.

Theorem 3. Any σ-space is a semistratifiable space with (CF) property.

The converse is not known. However, we have a partial answer to it.

Theorem 4. If a space X is a Fréchet, semistratifiable space with (CF) property, then X is a σ-space.

Proof. It is easy to see that X has a σ-CF network \mathcal{H}. By [10, Proposition 3.3], \mathcal{H} is a σ-closure-preserving network. Hence X is a σ-space.

The following example shows that any semistratifiable space need not have (CF) property.

Example 4. There exists a first countable, semistratifiable space which is not a σ-space.

Proof. Let X be the space in [4, Example 9.10]. Since X is not a σ-space, by Theorem 4, X is not a semistratifiable space with (CF) property.
Theorem 5. If a space X is embedded into a countable product of Lašnev spaces, then X is a k-semistratifiable space with (CF) property.

Proof. By the same method as in [9, Lemma 5.1 and Proposition 6.1] and by [10, Proposition 3.3], we can show that X has a σ-closure-preserving, CF family $\bigcup_n \mathcal{H}_n$ of closed subsets of X, which forms a k-network for X. For each $(n, U) \in \omega \times \tau$, let

$$S(n, U) = \bigcup \left\{ H \in \bigcup_{i \leq n} \mathcal{H}_i : H \subset U \right\}.$$

Then S is a k-semistratification with (CF) property.

The other known implications are indicated by the diagram below. The remaining proofs are easy and well-known, and therefore they are omitted.

References

Joetsu University of Education, Joetsu, Niigata 943, Japan