A characterization of smooth Cantor bouquets
Authors:
Witold D. Bula and Lex G. Oversteegen
Journal:
Proc. Amer. Math. Soc. 108 (1990), 529-534
MSC:
Primary 54F20
DOI:
https://doi.org/10.1090/S0002-9939-1990-0991691-9
MathSciNet review:
991691
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that all smooth fans having a dense set of endpoints are topologically equivalent.
- [1] J. H. Carruth, A note on partially ordered compacta, Pacific J. Math. 24 (1968), 229–231. MR 222852
- [2] Robert L. Devaney and Michał Krych, Dynamics of 𝑒𝑥𝑝(𝑧), Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, https://doi.org/10.1017/S014338570000225X
- [3] A. Lelek, On plane dendroids and their end points in the classical sense, Fund. Math. 49 (1960/61), 301–319. MR 133806, https://doi.org/10.4064/fm-49-3-301-319
- [4] John C. Mayer, An explosion point for the set of endpoints of the Julia set of 𝜆exp(𝑧), Ergodic Theory Dynam. Systems 10 (1990), no. 1, 177–183. MR 1053806, https://doi.org/10.1017/S0143385700005460
- [5] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39–44. MR 166762, https://doi.org/10.4064/cm-10-1-39-44
- [6] J. H. Roberts, The rational points in Hilbert space, Duke Math. J. 23 (1956), 489–491. MR 79238
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F20
Retrieve articles in all journals with MSC: 54F20
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0991691-9
Keywords:
Fan,
smooth fan
Article copyright:
© Copyright 1990
American Mathematical Society