A function space triple of a compact polyhedron into an open set in Euclidean space
HTML articles powered by AMS MathViewer
- by Katsuro Sakai
- Proc. Amer. Math. Soc. 108 (1990), 547-555
- DOI: https://doi.org/10.1090/S0002-9939-1990-0991709-3
- PDF | Request permission
Abstract:
Let $X$ be a non-zero dimensional compact Euclidean polyhedron and $Y$ an open set in Euclidean space ${{\mathbf {R}}^r}\left ( {r > 0} \right )$. The spaces of (continuous) maps, Lipschitz maps and PL maps from $X$ to $Y$ are denoted by $C\left ( {X,Y} \right )$, ${\text {LIP}}\left ( {X,Y} \right )$ and ${\text {PL}}\left ( {X,Y} \right )$, respectively. We prove that the triple \[ \left ( {C\left ( {X,Y} \right ),{\text {LIP}}\left ( {X,Y} \right ){\text {PL}}\left ( {X,Y} \right )} \right )\] is an $\left ( {s,\Sigma ,\sigma } \right )$-manifold triple, where $s = {\left ( { - 1,1} \right )^\omega }$, \[ \Sigma = \left \{ {x \in s|\sup \left | {x\left ( i \right )} \right | < 1} \right \}{\text {and}} \sigma = \left \{ {x \in s|x\left ( i \right ) = 0 {\text {except}} {\text {for}} {\text {finitely}} {\text {many}} i} \right \}.\].References
- R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515–519. MR 190888, DOI 10.1090/S0002-9904-1966-11524-0
- T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399–426. MR 283828, DOI 10.1090/S0002-9947-1971-0283828-7
- Tadeusz Dobrowolski, The compact $Z$-set property in convex sets, Topology Appl. 23 (1986), no. 2, 163–172. MR 855456, DOI 10.1016/0166-8641(86)90038-6
- Ross Geoghegan, On spaces of homeomorphisms, embeddings and functions. I, Topology 11 (1972), 159–177. MR 295281, DOI 10.1016/0040-9383(72)90004-3
- Ross Geoghegan, On spaces of homeomorphisms, embeddings, and functions. II. The piecewise linear case, Proc. London Math. Soc. (3) 27 (1973), 463–483. MR 328969, DOI 10.1112/plms/s3-27.3.463
- J. Luukkainen and J. Väisälä, Elements of Lipschitz topology, Ann. Acad. Sci. Fenn. Ser. A I Math. 3 (1977), no. 1, 85–122. MR 515647, DOI 10.5186/aasfm.1977.0315
- Katsuro Sakai, The space of cross sections of a bundle, Proc. Amer. Math. Soc. 103 (1988), no. 3, 956–960. MR 947690, DOI 10.1090/S0002-9939-1988-0947690-7 —, The space of Lipschitz maps from a compactum to an absolute neighborhood LIP extensor, preprint.
- Katsuro Sakai and Raymond Y. Wong, The space of Lipschitz maps from a compactum to a locally convex set, Topology Appl. 32 (1989), no. 3, 223–235. MR 1007102, DOI 10.1016/0166-8641(89)90030-8
- Katsuro Sakai and Raymond Y. Wong, On infinite-dimensional manifold triples, Trans. Amer. Math. Soc. 318 (1990), no. 2, 545–555. MR 994171, DOI 10.1090/S0002-9947-1990-0994171-4
- H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of $l_{2}$-manifolds, Fund. Math. 101 (1978), no. 2, 93–110. MR 518344, DOI 10.4064/fm-101-2-93-110
- Raymond Y. T. Wong, Lipschitz conjugation and extension of homeomorphisms in $l_{p}$-spaces, J. Math. Anal. Appl. 32 (1970), 573–583. MR 273391, DOI 10.1016/0022-247X(70)90279-9
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 547-555
- MSC: Primary 57N20; Secondary 54C35, 58B05, 58D15
- DOI: https://doi.org/10.1090/S0002-9939-1990-0991709-3
- MathSciNet review: 991709