Functional representation of vector lattices
HTML articles powered by AMS MathViewer
- by Isidore Fleischer
- Proc. Amer. Math. Soc. 108 (1990), 471-478
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993750-3
- PDF | Request permission
Abstract:
Every vector lattice is represented in the lattice of distribution functions valued in the complete Boolean algebra of its annihilators; the representation is complete join and positive multiple preserving and subadditive; restricted to the solid vector sublattice without infinitesimals, it preserves the full structure (including any existing infinite lattice extrema) and is faithful. Identifying the distribution with the continuous real-valued functions on the extremally disconnected Stone space of the algebra yields a representation which, specialized to Archimedean vector lattices, embeds them in the densely finite-valued continuous functions; identifying with the equivalence classes of functions measurable for a $\sigma$-field modulo a $\sigma$-ideal of "null sets" yields a representation which, specialized to Archimedean vector lattices, embeds them in the classes of a.e. finite functions. This is used to give simple proofs of Freudenthal’s spectral theorem and Kakutani’s structure theorem for $L$-spaces.References
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Pure and Applied Mathematics, vol. 119, Academic Press, Inc., Orlando, FL, 1985. MR 809372
- Marlow Anderson and Todd Feil, Lattice-ordered groups, Reidel Texts in the Mathematical Sciences, D. Reidel Publishing Co., Dordrecht, 1988. An introduction. MR 937703, DOI 10.1007/978-94-009-2871-8 G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. 25 (1967).
- Alain Bigard, Klaus Keimel, and Samuel Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR 0552653
- I. Fleischer, “Place functions”: alias continuous functions on the Stone space, Proc. Amer. Math. Soc. 106 (1989), no. 2, 451–453. MR 967485, DOI 10.1090/S0002-9939-1989-0967485-9
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Paul R. Halmos, Lectures on Boolean algebras, Van Nostrand Mathematical Studies, No. 1, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0167440
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578 W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces I, North-Holland, Amsterdam, 1971.
- Roman Sikorski, Boolean algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 25, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0126393
- B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff Scientific Publications, Ltd., Groningen, 1967. Translated from the Russian by Leo F. Boron, with the editorial collaboration of Adriaan C. Zaanen and Kiyoshi Iséki. MR 0224522
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 471-478
- MSC: Primary 06F20; Secondary 46A40, 54C30, 54H12
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993750-3
- MathSciNet review: 993750