Complete monotonicity of modified Bessel functions
HTML articles powered by AMS MathViewer
- by Mourad E. H. Ismail
- Proc. Amer. Math. Soc. 108 (1990), 353-361
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993753-9
- PDF | Request permission
Abstract:
We prove that if $\nu > 1/2$, then ${2^{\nu - 1}}\Gamma (\nu )/[{x^{\nu /2}}{e^{\sqrt x }}{K_\nu }(\sqrt x )]$ is the Laplace transform of a selfdecomposable probability distribution while ${2^\nu }\Gamma \left ( {\nu + 1} \right ){x^{ - \nu /2}}{e^{ - \sqrt x }}{I_\nu }\left ( {\sqrt x } \right )$ is the Laplace transform of an infinitely divisible distribution. The former result is used to show that an estimate of ${\text {M}}$. Wong [13] is sharp. We also prove that the roots of the equations \[ {b^3}{l_{\nu - 1}}\left ( {a\sqrt z } \right )/{I_\nu }\left ( {a\sqrt z } \right ) = {a^3}{I_{\nu - 1}}\left ( {b\sqrt z } \right )/{I_\nu }\left ( {b\sqrt z } \right ),\] and \[ {b^3}{K_{\nu + 1}}\left ( {a\sqrt z } \right )/{K_\nu }\left ( {a\sqrt z } \right ) = {a^3}{K_{\nu + 1}}\left ( {b\sqrt z } \right )/{K_\nu }\left ( {b\sqrt z } \right ),\nu > 0,z \ne 0,\] lie in a certain sector contained in the open left half plane. This proves and extends a conjecture of ${\text {H}}$. Hattori arising from his work in partial differential equations.References
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions, volume 2, McGraw-Hill, New York, 1954.
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- E. Grosswald, The Student $t$-distribution of any degree of freedom is infinitely divisible, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 2, 103–109. MR 426091, DOI 10.1007/BF00533993
- Philip Hartman, Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1–30. MR 515528, DOI 10.1090/S0002-9947-1978-0515528-6
- Philip Hartman, Uniqueness of principal values, complete monotonicity of logarithmic derivatives of principal solutions, and oscillation theorems, Math. Ann. 241 (1979), no. 3, 257–281. MR 535557, DOI 10.1007/BF01421208 H. Hattori, private communication.
- Mourad E. H. Ismail, Bessel functions and the infinite divisibility of the Student $t$-distribution, Ann. Probability 5 (1977), no. 4, 582–585. MR 448480, DOI 10.1214/aop/1176995766
- Mourad E. H. Ismail and Douglas H. Kelker, Special functions, Stieltjes transforms and infinite divisibility, SIAM J. Math. Anal. 10 (1979), no. 5, 884–901. MR 541088, DOI 10.1137/0510083
- Jim Pitman and Marc Yor, Bessel processes and infinitely divisible laws, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 285–370. MR 620995
- Olof Thorin, On the infinite divisibility of the Pareto distribution, Scand. Actuar. J. 1 (1977), 31–40. MR 431333, DOI 10.1080/03461238.1977.10405623
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923 M. W. Wong, On eigenvalues of pseudo-differential operators, Bull. London Math. Soc. 19 (1987), 63-66.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 353-361
- MSC: Primary 33A40; Secondary 35S99, 60E10
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993753-9
- MathSciNet review: 993753