Complete monotonicity of modified Bessel functions
Author:
Mourad E. H. Ismail
Journal:
Proc. Amer. Math. Soc. 108 (1990), 353-361
MSC:
Primary 33A40; Secondary 35S99, 60E10
DOI:
https://doi.org/10.1090/S0002-9939-1990-0993753-9
MathSciNet review:
993753
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove that if , then
is the Laplace transform of a selfdecomposable probability distribution while
is the Laplace transform of an infinitely divisible distribution. The former result is used to show that an estimate of
. Wong [13] is sharp. We also prove that the roots of the equations



- [1] A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher transcendental functions, volume 2, McGraw-Hill, New York, 1954.
- [2] William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- [3] E. Grosswald, The Student 𝑡-distribution of any degree of freedom is infinitely divisible, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 2, 103–109. MR 426091, https://doi.org/10.1007/BF00533993
- [4] Philip Hartman, Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1–30. MR 515528, https://doi.org/10.1090/S0002-9947-1978-0515528-6
- [5] Philip Hartman, Uniqueness of principal values, complete monotonicity of logarithmic derivatives of principal solutions, and oscillation theorems, Math. Ann. 241 (1979), no. 3, 257–281. MR 535557, https://doi.org/10.1007/BF01421208
- [6] H. Hattori, private communication.
- [7] Mourad E. H. Ismail, Bessel functions and the infinite divisibility of the Student 𝑡-distribution, Ann. Probability 5 (1977), no. 4, 582–585. MR 448480, https://doi.org/10.1214/aop/1176995766
- [8] Mourad E. H. Ismail and Douglas H. Kelker, Special functions, Stieltjes transforms and infinite divisibility, SIAM J. Math. Anal. 10 (1979), no. 5, 884–901. MR 541088, https://doi.org/10.1137/0510083
- [9] Jim Pitman and Marc Yor, Bessel processes and infinitely divisible laws, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 285–370. MR 620995
- [10] Olof Thorin, On the infinite divisibility of the Pareto distribution, Scand. Actuar. J. 1 (1977), 31–40. MR 431333, https://doi.org/10.1080/03461238.1977.10405623
- [11] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746
- [12] David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
- [13] M. W. Wong, On eigenvalues of pseudo-differential operators, Bull. London Math. Soc. 19 (1987), 63-66.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A40, 35S99, 60E10
Retrieve articles in all journals with MSC: 33A40, 35S99, 60E10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0993753-9
Article copyright:
© Copyright 1990
American Mathematical Society