## Complete monotonicity of modified Bessel functions

HTML articles powered by AMS MathViewer

- by Mourad E. H. Ismail
- Proc. Amer. Math. Soc.
**108**(1990), 353-361 - DOI: https://doi.org/10.1090/S0002-9939-1990-0993753-9
- PDF | Request permission

## Abstract:

We prove that if $\nu > 1/2$, then ${2^{\nu - 1}}\Gamma (\nu )/[{x^{\nu /2}}{e^{\sqrt x }}{K_\nu }(\sqrt x )]$ is the Laplace transform of a selfdecomposable probability distribution while ${2^\nu }\Gamma \left ( {\nu + 1} \right ){x^{ - \nu /2}}{e^{ - \sqrt x }}{I_\nu }\left ( {\sqrt x } \right )$ is the Laplace transform of an infinitely divisible distribution. The former result is used to show that an estimate of ${\text {M}}$. Wong [13] is sharp. We also prove that the roots of the equations \[ {b^3}{l_{\nu - 1}}\left ( {a\sqrt z } \right )/{I_\nu }\left ( {a\sqrt z } \right ) = {a^3}{I_{\nu - 1}}\left ( {b\sqrt z } \right )/{I_\nu }\left ( {b\sqrt z } \right ),\] and \[ {b^3}{K_{\nu + 1}}\left ( {a\sqrt z } \right )/{K_\nu }\left ( {a\sqrt z } \right ) = {a^3}{K_{\nu + 1}}\left ( {b\sqrt z } \right )/{K_\nu }\left ( {b\sqrt z } \right ),\nu > 0,z \ne 0,\] lie in a certain sector contained in the open left half plane. This proves and extends a conjecture of ${\text {H}}$. Hattori arising from his work in partial differential equations.## References

- A. Erdelyi, W. Magnus, F. Oberhettinger and F. Tricomi,
- William Feller,
*An introduction to probability theory and its applications. Vol. II*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0210154** - E. Grosswald,
*The Student $t$-distribution of any degree of freedom is infinitely divisible*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**36**(1976), no. 2, 103–109. MR**426091**, DOI 10.1007/BF00533993 - Philip Hartman,
*Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity*, Trans. Amer. Math. Soc.**246**(1978), 1–30. MR**515528**, DOI 10.1090/S0002-9947-1978-0515528-6 - Philip Hartman,
*Uniqueness of principal values, complete monotonicity of logarithmic derivatives of principal solutions, and oscillation theorems*, Math. Ann.**241**(1979), no. 3, 257–281. MR**535557**, DOI 10.1007/BF01421208
H. Hattori, private communication.
- Mourad E. H. Ismail,
*Bessel functions and the infinite divisibility of the Student $t$-distribution*, Ann. Probability**5**(1977), no. 4, 582–585. MR**448480**, DOI 10.1214/aop/1176995766 - Mourad E. H. Ismail and Douglas H. Kelker,
*Special functions, Stieltjes transforms and infinite divisibility*, SIAM J. Math. Anal.**10**(1979), no. 5, 884–901. MR**541088**, DOI 10.1137/0510083 - Jim Pitman and Marc Yor,
*Bessel processes and infinitely divisible laws*, Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) Lecture Notes in Math., vol. 851, Springer, Berlin, 1981, pp. 285–370. MR**620995** - Olof Thorin,
*On the infinite divisibility of the Pareto distribution*, Scand. Actuar. J.**1**(1977), 31–40. MR**431333**, DOI 10.1080/03461238.1977.10405623 - G. N. Watson,
*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR**0010746** - David Vernon Widder,
*The Laplace Transform*, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR**0005923**
M. W. Wong,

*Higher transcendental functions*, volume 2, McGraw-Hill, New York, 1954.

*On eigenvalues of pseudo-differential operators*, Bull. London Math. Soc.

**19**(1987), 63-66.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**108**(1990), 353-361 - MSC: Primary 33A40; Secondary 35S99, 60E10
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993753-9
- MathSciNet review: 993753