Characterizations of Tauberian operators and other semigroups of operators
Authors:
M. Gonzalez and V. M. Onieva
Journal:
Proc. Amer. Math. Soc. 108 (1990), 399-405
MSC:
Primary 47B99; Secondary 47D05
DOI:
https://doi.org/10.1090/S0002-9939-1990-0994777-8
MathSciNet review:
994777
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we present three characterizations of Tauberian operators in terms of: perturbations by compact operators, products with other operators, and restrictions to subspaces. We obtain also analogous characterizations for co-Tauberian operators and for other semigroups of operators related with the Tauberian and co-Tauberian ones.
- [1] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327. MR 0355536, https://doi.org/10.1016/0022-1236(74)90044-5
- [2] Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004
- [3] D. J. H. Garling and A. Wilansky, On a summability theorem of Berg, Crawford and Whitley, Proc. Cambridge Philos. Soc. 71 (1972), 495–497. MR 294946, https://doi.org/10.1017/s0305004100050775
- [4] M. González and V. M. Onieva, Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Roy. Irish Acad. Sect. A 88 (1988), no. 1, 35–38. MR 974281
- [5] M. Gonzalez and V. M. Onieva, Semi-Fredholm operators and semigroups associated with some classical operator ideals. II, Proc. Roy. Irish Acad. Sect. A 88 (1988), no. 2, 119–124. MR 986218
- [6] M. Gonzalez and V. M. Onieva, Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 1, 117–121. MR 966145, https://doi.org/10.1017/S0305004100001419
- [7] Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
- [8] W. B. Johnson and H. P. Rosenthal, On 𝜔*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, https://doi.org/10.4064/sm-43-1-77-92
- [9] Nigel Kalton and Albert Wilansky, Tauberian operators on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), no. 2, 251–255. MR 473896, https://doi.org/10.1090/S0002-9939-1976-0473896-1
- [10] Duncan H. Martin and Johan Swart, A characterisation of semi-Fredholm operators defined on almost reflexive Banach spaces, Proc. Roy. Irish Acad. Sect. A 86 (1986), no. 1, 91–93. MR 865107
- [11] R. D. Neidinger, Properties of Tauberian operators on Banach spaces, Ph.D. Thesis, University of Texas, 1984.
- [12] Richard Neidinger and Haskell P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterizations of Tauberian operators, Pacific J. Math. 118 (1985), no. 1, 215–228. MR 783025
- [13] Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author. MR 582655
- [14] Haskell P. Rosenthal, A characterization of Banach spaces containing 𝑙¹, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, https://doi.org/10.1073/pnas.71.6.2411
- [15] Walter Schachermayer, For a Banach space isomorphic to its square the Radon-Nikodým property and the Kreĭn-Milman property are equivalent, Studia Math. 81 (1985), no. 3, 329–339. MR 808576, https://doi.org/10.4064/sm-81-3-329-339
- [16] Ivan Singer, Bases in Banach spaces. II, Editura Academiei Republicii Socialiste România, Bucharest; Springer-Verlag, Berlin-New York, 1981. MR 610799
- [17] D. G. Tacon, Generalized semi-Fredholm transformations, J. Austral. Math. Soc. Ser. A 34 (1983), no. 1, 60–70. MR 683179
- [18] Kung Wei Yang, The generalized Fredholm operators, Trans. Amer. Math. Soc. 216 (1976), 313–326. MR 423114, https://doi.org/10.1090/S0002-9947-1976-0423114-X
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B99, 47D05
Retrieve articles in all journals with MSC: 47B99, 47D05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0994777-8
Keywords:
Tauberian operator,
compact perturbation,
ideal semigroup
Article copyright:
© Copyright 1990
American Mathematical Society