INTEGRAL GROUP RINGS WITH TRIVIAL CENTRAL UNITS

JÜRGEN RITTER AND SUDARSHAN K. SEHGAL

(Communicated by Maurice Auslander)

ABSTRACT. In this note finite groups G whose integral group ring $\mathbb{Z}G$ has only trivial central units are classified.

In this note we classify finite groups G whose integral group ring $\mathbb{Z}G$ has only trivial central units; a unit being trivial if it is of the form $\pm g$, $g \in G$. This question was raised by Goodaire and Parmenter [2].

It was proved by Higman ([1], [3, p. 57]) that all units of $\mathbb{Z}G$ are trivial if and only if

(a) G is Abelian with exponent a divisor of 4 or 6, or
(b) $G = K_8 \times E$, where K_8 is the quaternion group of order 8 and E is an elementary Abelian 2-group.

It follows easily that all units of a commutative group ring $\mathbb{Z}G$ are trivial if and only if:

For every $x \in G$ and every natural number j, relatively prime to $|G|$, we have $x^j = x$ or $x^j = x^{-1}$.

Denoting by \sim conjugation in G, we state our result:

Theorem. Let G be a finite group. All central units of $\mathbb{Z}G$ are trivial if and only if for every $x \in G$ and every natural number j, relatively prime to $|G|$, $x^j \sim x$ or $x^j \sim x^{-1}$.

Proof. At first we recall that any finite group of central units of $\mathbb{Z}G$ consists of trivial units only [4, p. 46]. It suffices to prove that the following conditions are equivalent:

1. $\mathbb{Z}G$ has only a finite number of central units.
2. The character field $\mathbb{Q}(\chi)$ of each absolutely irreducible character χ of G is either \mathbb{Q} or imaginary quadratic.
3. For every $x \in G$ and every natural number j, relatively prime to $|G|$, $x^j \sim x$ or $x^j \sim x^{-1}$.
(a) We shall first show that (1) and (2) are equivalent. Since the center of QG is generated by the class sums, the center Z of ZG is an order in the center of QG, the latter being the direct sum of all character fields $Q(\chi)$ [3, p. 544]. Hence Z is of finite additive index in the unique maximal order $\oplus_\chi O_\chi$ of $\oplus_\chi Q(\chi)$, with O_χ denoting the ring of integers in $Q(\chi)$. Thus the unit group of Z is of finite index in the multiplicative group $\oplus_\chi (O_\chi)^\times$ [4, p. 49]. It follows that (1) holds precisely when $(O_\chi)^\times$ is finite for all χ which by the Dirichlet unit theorem is the same as (2).

(b) We next prove that (3) implies (2). Let σ be an automorphism of $Q(\chi)/Q$. Extend σ to an automorphism $\zeta \to \zeta^j$ of $Q(\zeta)$ where ζ is a $|G|$th root of unity. Then $\chi^\sigma(g) = \chi(g^j) = \chi(g)$ or $\chi(g^{-1})$ by (3). We have $\chi^\sigma(g) = \chi(g)$ or $\bar{\chi}(g)$. Since $\bar{\chi}$ commutes with σ, it follows that $\chi + \bar{\chi} = \chi^\sigma + \bar{\chi}^\sigma$. Thus $\chi^\sigma = \chi$ or $\bar{\chi}$ by the linear independence of irreducible characters. This implies that $Q(\chi) = Q$ or an imaginary quadratic field.

(c) We finally show that (2) implies (3). The proof is dual of (b). For each $g \in G$ we define a function from the irreducible characters to the complex numbers, $T(g): \text{Irr}(G) \to \mathbb{C}$ by $\chi \to \chi(g)$. It follows by the orthogonality relations that these functions, one for each conjugacy class of G, are linearly independent. Now let $(j, |G|) = 1$. Then we have an automorphism $\zeta \to \zeta^j$ of $Q(\zeta)$ where ζ is a $|G|$th root of unity. Let σ be the restriction of this automorphism to $Q(\chi)$. Then $\chi^\sigma(g) = \chi(g)$ or $\chi(g^{-1})$ by (2). Thus $T(g^j) + T(g^{-j}) = T(g) + T(g^{-1})$. It follows due to the linear independence of these functions that $T(g^j) = T(g)$ or $T(g^{-1})$. Thus g^j is conjugate to g or g^{-1} as desired.

An easy consequence of (2) is:

Corollary. If all central units of ZG are trivial then the same is true for $Z\bar{G}$, \bar{G} a homomorphic image of G.

Examples. We close with a few examples of groups satisfying the condition of the theorem.

(a) $G = S_n$, the symmetric group on n-letters. In this case all the character fields are rational [3, p. 538].

(b) G a group of order 27. In this case, all character fields are Q, $Q(w)$, $w^3 = 1$.

(c) $G = \langle x, y: x^7 = 1 = y^3, xy = x^2 \rangle$. In this case,

$$QG = Q \oplus Q(w) \oplus Q(\sqrt{-7})_{3 \times 3}, \quad w^3 = 1.$$

Observe that $V = Q(\sqrt{-7})$ is the field of index 3 in $Q(\zeta)$, $\zeta^7 = 1$, and that V is a three-dimensional space over $Q(\sqrt{-7})$ on which G acts irreducibly by
letting x act as multiplication by ζ and y by the automorphism $\zeta \rightarrow \zeta^2$. In this example, the character fields are \mathbb{Q}, $\mathbb{Q}(w)$ and $\mathbb{Q}(\sqrt{-7})$.

Acknowledgment

We thank the referee for shortening the proof of the theorem.

References

Institut für Mathematik der Universität Augsburg, D-8900 Augsburg, West Germany

Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1 Canada