Dirichlet-finite analytic and harmonic functions are BMO
HTML articles powered by AMS MathViewer
- by J. L. Schiff
- Proc. Amer. Math. Soc. 108 (1990), 569-570
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994786-9
- PDF | Request permission
Abstract:
Based on a result of F. John, an elementary proof is given of the fact that Dirichlet-finite analytic and Dirichlet-finite harmonic functions are of bounded mean oscillation in the unit disk.References
- Maurice Heins, Hardy classes on Riemann surfaces, Lecture Notes in Mathematics, No. 98, Springer-Verlag, Berlin-New York, 1969. MR 0247069
- F. Džon, Functions whose gradients are bounded by the reciprocal of the distance to the boundary of the domain of definition, Uspehi Mat. Nauk 29 (1974), no. 2(176), 166–171 (Russian). Translated from the English by B. P. Panejah; Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901–1973), I. MR 0404540
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Yukio Kusunoki and Masahiko Taniguchi, Remarks on functions of bounded mean oscillation on Riemann surfaces, Kodai Math. J. 6 (1983), no. 3, 434–442. MR 717331, DOI 10.2996/kmj/1138036807
- Thomas A. Metzger, On BMOA for Riemann surfaces, Canadian J. Math. 33 (1981), no. 5, 1255–1260. MR 638379, DOI 10.4153/CJM-1981-094-6
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 569-570
- MSC: Primary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994786-9
- MathSciNet review: 994786