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COMPACT COMPOSITION OPERATORS ON L1

JOEL H. SHAPIRO AND CARL SUNDBERG

(Communicated by Paul S. Muhly)

Abstract. The composition operator induced by a holomorphic self-map of

the unit disc is compact on L1 of the unit circle if and only if it is compact

on the Hardy space H2 of the disc. This answers a question posed by Donald

Sarason: it proves that Sarason's integral condition characterizing compactness

on L1 is equivalent to the asymptotic condition on the Nevanlinna counting

function which characterizes compactness on H2 .

INTRODUCTION

We answer a question posed by Donald Sarason ([9], §11) concerning the com-

pactness of operators induced on L of the unit circle by composing Poisson

integrals with holomorphic self-maps of the unit disc. Sarason represented such

operators as integral operators, and gave a necessary and sufficient condition,

in terms of the integral kernel, for compactness. He observed that compactness

of such a (holomorphic) composition operator on L implies its compactness

on the Hardy space H , and asked if the converse is true. The purpose of this

note is to show that this is indeed the case:

♦  A holomorphic composition operator is compact on L   if and only if it

is compact on H2.

We prove this result in §4, after reformulating the problem in §§ 1 and 2, and

setting out some preparatory material on compactness in §3.

A consequence of our result is the equivalence of Sarason's integral condition

characterizing the compact composition operators on L ([9], Propositions 2

and 3), and the first author's asymptotic condition on the Nevanlinna counting

function, which characterizes compactness on H   ([11], Theorem 2.3).

A crucial role was played in [ 11 ] by a special case of C. S. Stanton's remark-

able formula for integral means [3], [13], [14]. The ideas of [11], along with the
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general version of Stanton's formula, provide the key to the main result of this

paper.

1. Harmonic Hardy spaces. For the material in this section we refer the reader

to the books of Duren ([2], Chapter 1), and Rudin ([8], Chapter 11). Let D

denote the unit disc of the complex plane. For 1 < p < oo, let Lp denote

the usual complex Lebesgue space on the unit circle dD, taken with respect to

normalized Lebesgue measure a . We denote the Poisson integral of / e Lp by

P[f], so that P[f] is a harmonic function on D whose radial limit coincides

with / a.e. on dD. It is well known that for 1 < p < oo the map

(1) f-*P\f\

establishes an isometric isomorphism taking Lp onto the "harmonic Hardy

space" hp : those complex harmonic functions u on D which satisfy the growth

condition

(2) \\u\\p:= sup   /   |MK)|"¿<7(C)<oo.
v        0<r<lJdD

The same is true for the space h°° of bounded harmonic functions on D,

taken in the supremum norm. However for p = 1 the situation is more subtle.

Here it is the space M of complex Borel measures, with the variation norm,

that the Poisson integral sends isometrically onto h , with L mapped onto

the closure in h of the harmonic polynomials (i.e. the closure of the Poisson

integrals of the trigonometric polynomials).

The usual Hardy space Hp is the closed subspace of hp that consists of

holomorphic functions.

2. Composition operators. In this paper, the symbol b always denotes a holo-

morphic self-map of D, i.e. a member of the unit ball of H°° . Each such map

induces a linear composition operator on the space of harmonic functions on D

by means of the formula:

Cbu = u o b       (u harmonic on D).

Littlewood's Subordination Principal ([6]; see also [2], Chapter 1, Theorem

1.7, page 10) asserts that if b{0) = 0, 1 < p < oo, and ueh" , then ||Cft«|| <

||w|| , i.e. that the operator Cb is a contraction on hp . Clearly the same is

true for h°° without the restriction on b(0). Since conformai automorphisms

of D induce Banach space isomorphisms of hp , it follows from Littlewood's

principle that for 1 < p < oo :

+   Each composition operator Cb induces a bounded linear operator on hp .

Since the composition of holomorphic function is again holomorphic, it fol-

lows that each composition operator acts boundedly on the ordinary (holomor-

phic) Hardy spaces of D, and it is in this context that they have received the

most study (see [1] for a survey of recent developments in this setting). Thanks

to the isomorphisms discussed in § 1, the operator Cb can be viewed as acting
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boundedly on the Banach spaces Lp or M. Since Cb preserves the closure

in h of the harmonic polynomials, it also induces a bounded operator on ¿'.

In this context, Sarason identified Cb as an integral operator, and employed

Schur's boundedness test for integral operators on Lp spaces to give another

proof of Littlewood's principle ([9], Proposition 1).

3. Compact composition operators. It has been known for a while that compact-

ness of a composition operator on one Hp space (p < oo) implies compactness

on all of them ([10], Theorem 6.1). Thus in treating the compactness problem

for Hardy spaces, one need only concentrate on the Hilbert space H . Recently

the compact composition operators on H were characterized as follows ([11],

Theorem 2.3):

+   Ch is compact on H2 o   lim   %>H = 0," M —1- '    |w|

where Nb(w) is the Nevanlinna counting function for b :

Nb(w)=    ¿2    loe¿      (weC\{b(0)}),
z€b-'{w}

which we understand to take the value zero whenever w g b(D).

Suppose 1 < p < oo. Then the Riesz projection theorem asserts that hp

can be written as a Banach space direct sum of Hp and the space of complex

conjugates of Hp functions that vanish at the origin. If b{0) = 0 then Cb

preserves both summands hence is compact on hp if and only if it is compact

on H" . Once this is said, the automorphism argument indicated in §2 renders

the extra condition 6(0) = 0 irrelevant. Thus for 1 < p < oo the compactness

problems for composition operators on both holomorphic and harmonic Hardy

spaces are the same.

If p = 1, however, the Riesz projection theorem no longer operates: in fact

//' is no longer a direct summand of hl ([7]; see also [5], Chapter 9, p. 154).

Nevertheless, H   is still a closed subspace of h  ; so compactness of Cb on
i i 2

h implies compactness on H , and therefore on H . Furthermore, Sarason

observed that compactness on M (a.k.a. h ) is equivalent to compactness on

L , and he asked if compactness on H implies compactness on h ([9], §11).

In the next section we answer Sarason's question in the affirmative.

4. Main theorem. For a holomorphic self-map b of D, the following conditions

are equivalent:

(a) Cb is compact on hl.

(b) Cb is compact on H   {and so on Hp for all p < oo).

Proof. The implications (a) => (b) o (c) have already been discussed, so only

(c) => (a) needs to be proved. As in [11], the key to success lies in Stanton's

formula, which we take a few paragraphs to discuss.
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Recall that every function g that is subharmonic on D has a Riesz mass

p[g] : a positive Borel measure with support in the closed unit disc, defined by

the distributional formula

ß[g] = T¿AZ>
in

where A denotes the Laplacian (see [4], Chapter 3). In plain English, for every

test function (infinitely differentiable function on C with compact support) t

we have

/ ?dp[g] = — I gATdA,

where dA denotes Lebesgue area measure on the plane ([4], Lemmas 3.6 and

3.8).
We have already discussed the Nevanlinna counting function Nb(w). For

each 0 < r < 1 there is also the reduced counting function:

Nb(w,r) = J2{^g^ = zeb-l{w}nrD^,

which by convention vanishes whenever w £ b{rD). We can now state:

Stanton's Formula [3], [13], [14]. If g is subharmonic onD, then for any

holomorphic self-map b of D and any 0 < r < 1 :

(1) /   g(b(rC))do(i;) = g(b(0))+ [ Nb(w,r)dp[g](w).
JdD J

Since Nb(w ,r) increases to Nb(w) as r increases to 1, and since the left-

hand side of (1) increases monotonically with r ([2], Theorem 1.5, p. 9), we

obtain for the special case g = \u\, a crucial formula for the h norm of a

composition with b.

Corollary. If u e hl, then

(2) \\Cbu\\x = \u(b(0))\ + JNb(w)dp[\u\](w).

For the special case: b = identity function on D, we have

Nb(w,r) = log¿- (\w\<r)
\w\

and

Nb(w) = log-— (M<1),

with both functions vanishing outside the indicated range of w . Along with

( 1 ) and (2) this yields the following formulas for both the actual and "reduced"

norm of a function ueh1 :

(3) \\u\\x = \u{0)\ + jlog^dp[\u\](w),

(4) /   |H(rí)|rf<7(í) = |"(0)|+/ log-?-dp[\u\]{w),       (0<r,<l).
JdD JrD \W\
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We can now proceed with the proof of the main theorem. There is no loss

of generality in assuming that b(0) = 0, so we do this for the remainder of

the proof. A routine normal families argument shows that the unit ball of h

is compact in the topology of uniform convergence on compact subsets of D,

and from this it follows quickly that in order to show Cb compact it is enough

to check that ||C¿m ||, —» 0 whenever {un} is a sequence in the unit ball of h

that converges to zero uniformly on compact subsets of D.

So fix such a sequence {un}. Let pn = p[\un\], the Riesz mass of the sub-

harmonic function \un\. Let e > 0 be given.

We are assuming that the counting function of b satisfies the asymptotic

decay condition (c) of the statement of the main theorem, so we may choose

0 < r < 1 so that

(5) Nb(w)<e    log^       (allr<|«;|<l).

From (2):

l|C6"Jli = K(0)l+ f  Nb(w)dpn(w)+ [      Nb(w)dpn(w)
JrD JD\rD

K(0)| + /   Nb(w) dpn{w) + e i log r— dpn{w),
JrD Jd \w\

so from (3) and the fact that \\un\\i < 1 for each n , we obtain

(6) IIC6w„lli <(l-e)|Mn(0)H-e+ /"  Nb(w)dpn(w).
JrD

We turn our attention to the last integral. Here we require Littlewood's in-

equality ([10]; see also [11], p. 380), which asserts that, because b(0) = 0, we

have

(7) ^(-)<log¿        (M<1).

Thus:

<

/   Nb{w)dpn(w)<       log-—dpn{w)
JrD JrD \w\

f r 1

JrD \w\ '

f   \un(rQ\da{Q-\un{0)\ + pn(rD)log\,
JdD '

where the last line follows from (4). Since the sequence {un} converges to zero

uniformly on compact subsets of D, the first two terms in the last line above

tend to zero as n —► oo. Substituting all this back into (6) we get:

(8) \\Cbun\\x<e + pn(rD)logj + o(l)       («-oo).
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Recall that we wish to show ||Cfe«n||, -* 0, and to this end have fixed an arbi-

trary positive number e, and have chosen r e (0,1 ), also fixed, and depending

only on e . The desired result will follow from (8) once we verify that

(9) Umpn(rD) = 0.

To prove (9), let t be a test function on the plane with 0 < x < 1, support

T c ((r + l)/2)D, and x = 1 on rD. From these conditions on x and our

earlier discussion of the Riesz mass:

(10) pn(rD) <jxdpn = ±JAx\un\dA < ^-J^JuJdA,

where M = max{|AT(z)|: z eC) (finite because At is also a test function).

Since the sequence {un} converges to zero uniformly on compact subsets of

D, and the support of x is such a set, the last integral in ( 10) converges to zero.

This proves (9), and completes the proof of the theorem.   D

Remarks, (a) Littlewood's inequality, along with (2) and (3) of the last section

provide an alternate proof of Littlewood's subordination principle for the space

h . A similar proof, along with the appropriate version of Stanton's formula,

leads to the same result for H , and as we mentioned in the Introduction, lays

the groundwork for the characterization of the compact composition operators

on that space.

(b) Sarason characterizes the compactness of Cb in terms of the integral

kernel

Kh{C,r])=   l-W>[        {CrjedD),
b \n-b(Q\2        K '

where b(Ç) denotes the radial limit of b, which exists for a.e.   Ç e 3D. His

result can be rephrased as follows:  Cb is compact on h   if and only if:

(*) j Kb(C,ri)da(C)=l    for all n e dU.

The result of the last section shows that condition (*) is equivalent to the

requirement

Nb(w) = o{l - \w\)       as |iu| —► 1 - .

(c) Sarason also asked in [9] if an extreme point of the H°° unit ball could

satisfy (*). In view of our main result, this question can be rephrased: Can

an extreme point of the unit ball of H°° induce a compact operator on H ? In

[12] we have shown that this can happen: in fact there is a univalent extreme

point that induces a compact composition operator on H , and which therefore

satisfies (*).
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