Embedding subspaces of into
Author:
Michel Talagrand
Journal:
Proc. Amer. Math. Soc. 108 (1990), 363-369
MSC:
Primary 46B25; Secondary 46E30
DOI:
https://doi.org/10.1090/S0002-9939-1990-0994792-4
MathSciNet review:
994792
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We simplify techniques of Schechtman, Bourgain, Lindenstrauss, Milman, to prove the following. If is an
-dimensional subspace of
, there exists a subspace
of
such that
whenever
, where
is the
-convexity constant of
, and where
is a universal constant.
- [1] J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1989), no. 1-2, 73–141. MR 981200, https://doi.org/10.1007/BF02392835
- [2] W. J. Davis, V. D. Milman, and N. Tomczak-Jaegermann, The distance between certain 𝑛-dimensional Banach spaces, Israel J. Math. 39 (1981), no. 1-2, 1–15. MR 617286, https://doi.org/10.1007/BF02762849
- [3] T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, https://doi.org/10.1007/BF02392234
- [4] Yehoram Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), no. 4, 265–289. MR 800188, https://doi.org/10.1007/BF02759761
- [5] Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186. MR 356155, https://doi.org/10.4064/sm-52-2-159-186
- [6] William B. Johnson and Gideon Schechtman, Embedding 𝑙^{𝑚}_{𝑝} into 𝑙ⁿ₁, Acta Math. 149 (1982), no. 1-2, 71–85. MR 674167, https://doi.org/10.1007/BF02392350
- [7] M. Ledoux and M. Talagrand, Comparison theorems, random geometry and some limit theorems for empirical processes, Ann. Probab. 17 (1989), no. 2, 596–631. MR 985381
- [8] -, Isoperimetry and processes in probability in a Banach space, (to be published by Springer-Verlag in the "Ergebrisse" series).
- [9] D. R. Lewis, Finite dimensional subspaces of 𝐿_{𝑝}, Studia Math. 63 (1978), no. 2, 207–212. MR 511305, https://doi.org/10.4064/sm-63-2-207-212
- [10] Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, vol. 101, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 630532
- [11] Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- [12] G. Pisier, Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 1, 23–43 (French). MR 584081
- [13] Gideon Schechtman, More on embedding subspaces of 𝐿_{𝑝} in 𝑙ⁿᵣ, Compositio Math. 61 (1987), no. 2, 159–169. MR 882972
- [14] Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B25, 46E30
Retrieve articles in all journals with MSC: 46B25, 46E30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-0994792-4
Article copyright:
© Copyright 1990
American Mathematical Society