Embedding subspaces of $L_ 1$ into $l^ N_ 1$
HTML articles powered by AMS MathViewer
- by Michel Talagrand
- Proc. Amer. Math. Soc. 108 (1990), 363-369
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994792-4
- PDF | Request permission
Abstract:
We simplify techniques of Schechtman, Bourgain, Lindenstrauss, Milman, to prove the following. If $X$ is an $n$-dimensional subspace of ${L_1}$, there exists a subspace $Y$ of $l_1^N$ such that $d\left ( {X,Y} \right ) \leq 1 + \varepsilon$ whenever $N \geq CK{\left ( X \right )^2}{\varepsilon ^{ - 2}}n$, where $K\left ( X \right )$ is the $K$-convexity constant of $X$, and where $C$ is a universal constant.References
- J. Bourgain, J. Lindenstrauss, and V. Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1989), no. 1-2, 73–141. MR 981200, DOI 10.1007/BF02392835
- W. J. Davis, V. D. Milman, and N. Tomczak-Jaegermann, The distance between certain $n$-dimensional Banach spaces, Israel J. Math. 39 (1981), no. 1-2, 1–15. MR 617286, DOI 10.1007/BF02762849
- T. Figiel, J. Lindenstrauss, and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), no. 1-2, 53–94. MR 445274, DOI 10.1007/BF02392234
- Yehoram Gordon, Some inequalities for Gaussian processes and applications, Israel J. Math. 50 (1985), no. 4, 265–289. MR 800188, DOI 10.1007/BF02759761
- Jørgen Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Studia Math. 52 (1974), 159–186. MR 356155, DOI 10.4064/sm-52-2-159-186
- William B. Johnson and Gideon Schechtman, Embedding $l^{m}_{p}$ into $l^{n}_{1}$, Acta Math. 149 (1982), no. 1-2, 71–85. MR 674167, DOI 10.1007/BF02392350
- M. Ledoux and M. Talagrand, Comparison theorems, random geometry and some limit theorems for empirical processes, Ann. Probab. 17 (1989), no. 2, 596–631. MR 985381, DOI 10.1214/aop/1176991418 —, Isoperimetry and processes in probability in a Banach space, (to be published by Springer-Verlag in the "Ergebrisse" series).
- D. R. Lewis, Finite dimensional subspaces of $L_{p}$, Studia Math. 63 (1978), no. 2, 207–212. MR 511305, DOI 10.4064/sm-63-2-207-212
- Michael B. Marcus and Gilles Pisier, Random Fourier series with applications to harmonic analysis, Annals of Mathematics Studies, No. 101, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 630532
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- G. Pisier, Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 1, 23–43 (French). MR 584081, DOI 10.24033/asens.1376
- Gideon Schechtman, More on embedding subspaces of $L_p$ in $l^n_r$, Compositio Math. 61 (1987), no. 2, 159–169. MR 882972
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 363-369
- MSC: Primary 46B25; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1990-0994792-4
- MathSciNet review: 994792