$L^ \infty$-BMO boundedness for a singular integral operator
HTML articles powered by AMS MathViewer
- by Javad Namazi
- Proc. Amer. Math. Soc. 108 (1990), 465-470
- DOI: https://doi.org/10.1090/S0002-9939-1990-0998738-4
- PDF | Request permission
Abstract:
If $K\left ( x \right ) = \Omega \left ( x \right )/|x{|^n}$ is a Calderón-Zygmund kernel and $b\left ( {|x|} \right )$ is a bounded radial function, we find conditions on $b$ such that the singular operator whose kernel is $b\left ( x \right )K\left ( x \right )$ is bounded from ${L^\infty }\left ( {{R^n}} \right )$ to ${\text {BMO}}\left ( {{R^n}} \right )$, or equivalently from ${H^1}\left ( {{R^n}} \right )$ into ${L^1}\left ( {{R^n}} \right )$.References
- Sagun Chanillo, Douglas S. Kurtz, and Gary Sampson, Weighted weak $(1,1)$ and weighted $L^p$ estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), no. 1, 127–145. MR 831193, DOI 10.1090/S0002-9947-1986-0831193-7
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Guy David and Jean-Lin Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), no. 2, 371–397. MR 763911, DOI 10.2307/2006946
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Javad Namazi, A singular integral, Proc. Amer. Math. Soc. 96 (1986), no. 3, 421–424. MR 822432, DOI 10.1090/S0002-9939-1986-0822432-2
- Jaak Peetre, On the theory of ${\cal L}_{p},\,_{\lambda }$ spaces, J. Functional Analysis 4 (1969), 71–87. MR 0241965, DOI 10.1016/0022-1236(69)90022-6
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 465-470
- MSC: Primary 42B20; Secondary 47G05
- DOI: https://doi.org/10.1090/S0002-9939-1990-0998738-4
- MathSciNet review: 998738