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GENERATING FUNCTIONS FOR THE NUMBERS
OF ABELIAN EXTENSIONS OF A LOCAL FIELD

ARTUR TRAVESA

(Communicated by William Adams)

Abstract. The aim of this paper is to give an explicit formula for the num-

bers of abelian extensions of a p-adic number field and to study the generating

function of these numbers. More precisely, we give the number of abelian ex-

tensions with given degree and ramification index, and the number of abelian

extensions with given degree of any local field of characteristic zero. Moreover,

we give a concrete expression of a generating function for these last numbers.

1. Introduction

The problem of "counting extensions" has been studied in the local case by

M. Krasner in [Krl] and by J-P. Serre in [Sel]. Krasner gave formulas for the

numbers

( 1 ) of all totally ramified extensions with given degree and discriminant;

(2) of all totally ramified extensions with given degree; and

(3) of all extensions with given degree.

Serre re-obtained these numbers by means of a "mass formula" (cf. [Sel],

[Tr2]).

We fix our attention on the abelian case. Let K be a local field, fix a separable

closure Ksep\K, and for all pairs (« ,e) of positive integers consider the sets

T.(n;K) m {L\K: KQLÇ Ksep and [L:K] = n},

Z{n,e;K) = {Le2(n;K):e{L\K) = e},

•Lab(n ;K) = {Le l(n ; K) : L\K abelian},

\b{n,e;K) = {Lel{n,e;K): L\K abelian},

where [L: K] and e(L\K) denote the degree and the ramification index of the

extension L\K, respectively. Consider also their cardinals s(n ; K), s(n, e ; K),

a{n ; K), and a(n,e ; K).
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When K is of characteristic zero, AT is a finite extension of the field Q of

the p-adic numbers; then, Z(n;K) is a finite set (cf. [Lai: Chap. II, § 5, Prop.

14]), and therefore Z(/i ,e;K), Zab{n ;K), and \b(n ,e;K) are also finite.

We define the generating functions

G{K;s) = Yda{n\K)n'5

GJK;s) = J2"(",l>K)n~S
n>\

Gtr{K;s) = Yda{n,n;K)n-5
n>\

of the numbers of abelian extensions of K, of the numbers of unramified

(abelian) extensions of K, and of the numbers of totally ramified abelian ex-

tensions of K, respectively.

The aim of this work is to give explicit expressions for these generating func-

tions and, also, for their coefficients. The numbers of extensions are given in

Theorem 5, and the generating functions are given in Theorem 6.

2. The tamely ramified case

We begin with the unramified case. Let n0 = [K: Q ] be the absolute degree,
— f

and put q the cardinal of the residual field K of K ; i.e. q = p with f0 =

f{K\Q) the absolute residual degree. For all n>\ K has only one unramified

extension of degree n, namely, K(Q where C is a primitive (qn - l)th root

of the unity, and it is abelian. So, we have a(n ,l;K) = s(n, 1 ;K) = 1 and,

then, Gnr(K;s) - Ç(s) is the Riemann zeta function.

For the tamely ramified case we have:

Proposition 1. Let n, e be positive integers such that e \ n and (p, e) = 1. Then,

the following statements are equivalent:

(1) lab(n,e;K)¿0;

(2) K contains all primitive eth roots of the unity;

(3) e|<7-l;

(4) Zab(n,e;K) = 'L(n,e;K);

(5) a(n,e;K) = e.

Proof. (1) =¡> (2) Assume that L e Z,ab(n,e;K), and let K0\K be the only

unramified extension of degree f = n/e of K ; then KQç L and we can write

L = K0(a) where a is a prime element of KQ. If n is a prime element of

K we can put a — un with u an invertible element of K0 ; as K(a) ç L,

we have K(a)\K abelian. On the other hand, K0(u )\K is unramified, and

so, abelian. But n 'e g K(a,u 'e), and so K(n )\K is abelian. This implies

that K contains the eth roots of the unity. (2) => (3) For, then K contains

the eth roots of the unity. (3) => (4) If L e Z(« ,e;K) then L = K0(a) as in

(1) => (2). But K contains the eth roots of the unity, and by Hensel's lemma,
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so does K; then KQ(ul,e ,nl,e)\K is abelian and L Ç K0{u'e,nle) ; so L\K

is abelian. (4) => (5) a(n,e;K) = s{n,e;K) = s{e,e;KQ) = e (cf. [Sel]).

(5) => (1) is obvious.     D

Remarks. (1) Observe that if e \ q - 1, then a{n,e;K) = e does not depend

on the particular values of n such that e\n .

(2) Proposition 1 and its proof are also true in the case of a local field of

characteristic p > 0.

3. The general case

The Lubin-Tate theory (cf. [Nel: Chap. HI, §7]) describes the maximal

abelian extension Ka \K. Let n be a prime element of K, and let F be

a Lubin-Tate module for n. Denote by Km the field obtained from K by

the adjunction of the points of rc^-division of F , and put K(n) = Um>i Km .

Then, Ka = K(n'Knr where Knr\K is the maximal unramified extension of

K. One has that Km\K is a totally ramified abelian extension such that

(1) [Km.K] = qm-\q-\),

and

(2) Gal{Km\K)^UKluf\

the factor group of the units of K by the units of K congruent to 1 mod nm .

Let n, e be positive integers such that e \ n and assume that L e

Zfli(«, e ; K) ; then, there exist N ,m> 1, (p ,N) = 1, and a primitive TYth root

of the unity, £, such that L ç KJQ ; as *(*M(0|*) = e(KJK) = g""l<ff-l>)

we have e = p e with r > 0 and e' | g - 1 . Put « = /?*«', (p,n) = 1 ;

the fact that we are dealing with abelian extensions and the decomposition

of their Galois groups into direct sum of Sylow's /7-subgroups, implies that

a(n,e;K) = a{n ,e1 ;K)a(ps,p';K). So we can restrict our attention to the

case n = ps, e = pr, 0<r<5. The set l.ab(ps, pr ; K) is finite and

so we can select a sufficiently large integer m > 1 and a certain root of

the unity, Ç, such that for all L e Tab{ps ,pr ;K) is L ç Km(Q. More-

over L is a subfield of the maximal p-subextension of Km(Q; this subex-

tension is K'm(C), where K'm is the maximal p-subextension of Km and Ç is a

(# - 1 )th root of unity for some integer u > 0. Looking at the Galois group

Gal{K'jQ\K) ~ Gal{K'jK)xGal(K(Q\K), and because AT(C)|A: is cyclic, one

sees that we can assume u — s .

Let Lx,... ,Lt be all the subextensions L ç A^ such that [L : AT] = // .

We have the following

Lemma 2. For all L e Lab(ps,pr; K) there exists exactly one index j, 1 < j < /,

such that Le L .(C).

Proof. The L (C) are subextensions of A"^(C) which contain A"(C) and have

ramification index e(LK)\K) = pr ; in fact, they are the only ones. So L(Q is

one of them.   G
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Consider, now, one of the L,, 1 < j < t ; we put G = Gal(L(Q\K(Q) ~

Gal(Lj\K), G0 = Gal{Lj{Q\Lj) s Gal{K(Q\K) ± Z/psZ, and we identify
Ga/(L.(C)|AT) with the finite abelian p-group G = G0® Gj. We shall use the

additive notation for all these groups.

We can compute the ramification index e(L\K) for all fields L ç L .(C). In

fact, if X = Gal{Lj(C)\L) we have e{L\K) = (Gy: GjHX), because Lß)\K(Q

is totally ramified and GjDX = Gal(Lj(Ç)\L(Q). So, we have e(L\K) = p if

and only if (?.nl= (0). We summarize this in the following lemma:

Lemma 3. There exists a one-to-one map between the sets

Bj = {XCG0® Gj : (G0 © GJ : X) = ps and GjHX = (0)},

and,

^¡{ps,p;K) = {Lelab(p\pr;K):LCLj(Q}.   a

But the cardinal of the set B. does not depend on j. In fact, we shall obtain

#Bj — pr for all j from the more general result:

Proposition 4. Let G, be a finite abelian p-group of order pr and let GQ ~

Z/psZ. Put G=GQ® G, and define B = {X c G: (G: X) = ps and G^X =

(0)}. If r < s then #B = pr, otherwise B is the empty set.   a

Corollary. For 0 < r < s we have a(ps ,p' ;K) = prtr, where tr is the number

of open subgroups of UK of index pr.

Proof. It remains to compute the number / of subfields L. ç K.'m such that

[L : K] = pr ; it is the same than the number of subgroups of Gal{K'm\K) of

index pr. But this group is isomorphic to the Sylow's p-subgroup of

Gal(Km\K) ~ Uk/Uk > and there is a one-to-one map between the set of all

subgroups of index pr of UK/U^ and the set of all the open subgroups of

index pr of UK , for m sufficiently large.     D

Observe that a{ps,pr;K) does not depend on s > r. We have, then, the

following theorem:

Theorem 5. Let n, e be positive integers. Write n = psn , e = pre with

{p ,e'n) = 1. Then, we have

( e tr,    if e\n and e I q - 1,
(1) a(n,e;K)=\     ' '   .

( 0,       otherwise;
s

(2) a{n;K) = a,{gcá{n,q-\))YdPtr,
r=0

where ox(m) = J2d\m d and t, is the number of open subgroups of index pr of

UK.       D
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4. The generating functions

Let us forget for a moment the convergence questions. We have just seen

that, if e | n , a(n,e;K) = a(e,e;K); this implies that

a(n;K) = ^2a(n,e;K) = J2a(n/e,l;K)a(e,e;K).
e\n e\n

This equality says us that the arithmetic function n i—► a(n ; K) is the Dirich-

let convolution of the functions n i—> a(n ,l;K) and n i—► a{n ,n;K). So the

series G(K;s) is the ordinary product of the series Gnr(K;s) and Gtr{K;s)

(cf. [Api: Chap. 11, §4, Thm. 11.5]). Moreover, the arithmetical function

a(n,n ;K) is multiplicative and so, we can write the Euler product, extended

over all the prime numbers £ ,

Gtr(K;s) = l[Be(K;s),
i

where
Bf(K;s) = J2a(£r,£r;K)rrs.

r>0

Assume, now, that £ ^ p. From Proposition 1 we have that B((K;s) is a

finite sum; in fact, if a(£r ,£r ; K) ^ 0 then £r must divide q - 1 ; in particular,

we have Bt{K;s) = 1 for all £ not dividing p(q - 1). Moreover one can

compute easily the product

l[Be(K;s) = al_s(q-l),

where <x,_,(m) = £,,„, rf1*'.

From the equalities

G(K;s) = GJK;s)Glr(K;s)

= C(s)al_s(q-\)Bp(K;s)

we need only to prove the convergence and to sum the series

r>0

= Ytpr{l-s)
¿_^t   r^

r>0

in some semiplane.

The structure theorem of the units of K (cf. [Hal: Chap. 15, §5]) says us

that if p. > 0 is the greatest integer such that K contains all the primitive /Ah

roots of the unity, then

UK^Z/pflZxZI{q-\)ZxZnp\

Z   being the ring of the p-adic integers. Observe that this group is the product

of a finite abelian group and an abelian profinite p-group.
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So, let A be a finite abelian group and put G = Ax Z"°. For all integers

r > 0 put tr(A, n0) the number of all open subgroups of G of index pr, and

define the generating function

g{A ,nQ;T) = ^tr{A ,nQ)Tr

r>0

of these numbers.

Remark. Observe that if we put A = Z/pßZ x Z/(q - 1)Z , we obtain that

Bp(K;s) = g(A,n0;pl-s);

so the problem related to B (K;s) is reduced to a group problem.

We state here the result concerning G(K;s).

Theorem 6. Let K be a finite extension of Qp of degree nQ and let p. > 0 be

the greatest integer such that K contains the primitive pßth roots of the unity.

Then, we have

(1) G{K;s) is convergent in some semiplane and extends meromorphically

to all the plane with simple poles at s — 2,3, ... , n0 and a double pole

at s = 1.

(2) The extension has the expression

G(K;s) = C(s)crl_s(q-l)    ^   {Ho+l_s)    Z«^(l ,*0) ;/>'-'),

where C(s) is the Riemann zeta function and

"0

Z(GFp(\,n0);T) = Y[(l-ph-lT)-1

h=\

is the zeta function of the Grassmannian defined by all the lines of an (nQ + 1)-

dimensional vector space over F .

The result will follow from a more general result that we shall prove in the

next paragraph.

5. The group problem

Let A be a finite abelian p-group. Put G{ = A x Z"°~ , G2 = Z , G =

G{ © G2 and define the set Sr{A, nQ) of all the open subgroups of G of index

pr. If X e Sr(A, n0), then p G ç X and Gjp'G is a finite abelian p-group.

So we have a one-to-one map between Sr(A,nQ) and Sr(G/prG,0), and, then,

tr(A,n0) = tr(G/prG,0). ^

If we put G', = GJprG{ , G'2 = G2/prG2 ~ Z/prZ we have G/prG ~

G\ © G'2. Moreover, if X' e Sr(G\ ®G2,0) we have {G\ : G\ n X1) = ph for

some h , 0 < h < r. So, we can write the cardinal tr(A,n0) as the sum, for

0 < h < r, of the cardinals of the sets

{X' c G\ © G'2 : (G, © G'2 : x') = p  and (G\ : G\ nl')=/}.
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Now, this set is the disjoint union, for all subgroups B ç G\   such that

{G\ : B) = ph , of the sets

{X' ç G\ © G'2: (G'j © G'2: X') = p and G\nX' = B},

and each one of them is equipotent, by passing to the quotient, X" - X1 ¡B,

with the set

{X" ç G" © G2 : (G" © G'2 : X") = p and G" n X" = (0)},

where G" = G[/B. As G2 ~ Z/prZ , and G" is a finite abelian p-group with
h h

order p  , we can apply Proposition 4: its cardinal equals p  . So, we have the

formula
r

h=0      BCG,/prG¡

(C/p'G,: B)=ph

(*) =¿//,(G1//G,,0)
/i=0

=xy^>"0-i)>
/¡=o

because /A(^,«0 - 1) = th{GJphGx ,0) = th{GJprGx ,0).

Theorem 7. JFiíA ?/¡e above notations we have:

(1) Theseries g{A,nQ;T) has a positive radius of convergence;

(2) #(.4,0 ; T) is a polynomial in T with positive integer coefficients;
(3) g(A,n0;T) = g(A,0;pnaT)Z(GFp(l,n0);T);

(4) g(A ,nQ;T) has poles only at T = p~J for j = 0,1,2, ... , «0 - 1, and

they are simple.

Proof. We have, from the above formula, that tr{A,n0) = 0(prn°) (induction

over n0 ). So the radius of convergence of g(A ,n0;T) is at least equal to p~"°.

Moreover,

g(A,n0;T) = ¿2(¿2phth(A,n0-l))Trh
I

r>0   \h=0 /

l>0        >>0

g(A,n0- \;pT).
1 -T

Now, induction over n0 implies that

r^N ,      ,        « »Urn,g(A,n0;T) = g(A,0;p"°T)H(l-ph-lTr1;

h=i

and the last product is Z(GF ( 1, «0) ; T).
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Moreover A is finite, so g(A,0;T) is a polynomial in T of degree r (if A

is of order pr ) and with positive integer coefficients. The question concerning

poles is clear if one notes that the polynomial g(A,0;p"°T) has no positive

real zeroes.     D

Remarks. ( 1 ) It is not difficult to prove that if C is the number of all subgroups

of A , then one has that tr(A, «„) < C2n°pn°r.

(2) Assume that A = Z/pßZ . Then

g(A,0;T) = (l-T"+')/(l-T),

because tr(A,0) = 1 for 0 < r < p, and tr{A,0) = 0 for r> p.

6. Final remarks

We can obtain the numbers a{n,e;K) and a(n;K) explicitly. In fact, by

the formulas in Theorem 5 we need only to give the numbers tr{Z)ppZ, «0)

for all r > 0. This can be done in two different ways: by induction using the

formula (*), or by expanding the generating function

"0

g{ZlpßZ,Q;pnaT)Y[{\ h-\ ™,N-
P      T)

h=\

into a power series in T. This leads to the following proposition:

Proposition 8. One has that

tr(Z/pMZ,n0) =
n0 + r -P n0(ß+\) n0 + r

(n + i)
.*£«,*« w-*aj2p^>i'+'("'-m'}T[

M=r <>1 L
M, - MM

where the last sum is extended over all the partitions M: M¡-\-\-Mr

that Mj > • • • > Mr >¿0,  Mi < Njt  / > 1  and TV, =      • = N„ = i
N¡ = n0, for i > p ; and where the symbol

M      N+j

r such

o

N + M
M JP       ;=1    P

- 1

PJ-l

is the value at p of the generating polynomial of the Betti numbers

ß2j(GF (M ,N)) of the Grassmannian manifold of the M-dimensional subspaces

of a {N + M)-dimensional vector space over F .

A proof of this proposition can be found in [Trl].
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