On clustering in central configurations
HTML articles powered by AMS MathViewer
- by Gregory Buck
- Proc. Amer. Math. Soc. 108 (1990), 801-810
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990414-7
- PDF | Request permission
Abstract:
Central configurations lead to special solutions of the $n$-body problem. In this paper we present a geometric condition that all central configurations must satisfy: a central configuration cannot have too much ’clustering’-they are bounded away from the diagonal in configuration space. An explicit bound is given.References
- G. R. Hall, Central configurations of the $1 + N$ body problem, preprint.
K. Meyer and D. Schmidt, Bifurcation of relative equilibria in the four and five body problem, preprint.
- Richard Moeckel, Relative equilibria of the four-body problem, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 417–435. MR 805839, DOI 10.1017/S0143385700003047
- Donald G. Saari, On the role and the properties of $n$-body central configurations, Celestial Mech. 21 (1980), no. 1, 9–20. MR 564603, DOI 10.1007/BF01230241 D. Schmidt, Central configurations in ${{\mathbf {R}}^2}$ and ${{\mathbf {R}}^3}$, preprint.
- M. Shub, Appendix to Smale’s paper: “Diagonals and relative equilibria”, Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 199–201. MR 0278700
- Carlos Simó, Relative equilibrium solutions in the four-body problem, Celestial Mech. 18 (1978), no. 2, 165–184. MR 510556, DOI 10.1007/BF01228714
- S. Smale, Problems on the nature of relative equilibria in celestial mechanics. , Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 194–198. MR 0278699
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 801-810
- MSC: Primary 70F15; Secondary 58F05, 58F14
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990414-7
- MathSciNet review: 990414