A Trüdinger inequality on surfaces with conical singularities
HTML articles powered by AMS MathViewer
- by Wen Xiong Chen
- Proc. Amer. Math. Soc. 108 (1990), 821-832
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990415-9
- PDF | Request permission
Abstract:
In this paper, the author establishes an isoperimetric inequality on surfaces with conical singularities, and by using it, proves a Trüdinger inequality with best constant on such surfaces. The best constants of the Trüdinger inequality are also found for a class of "symmetric" singular matrices.References
- Marc Troyanov, Les surfaces riemanniennes à singularités coniques (preprint).
Sun-Yang A. Chang and Paul C. Yang, A sharp version of Trüdinger inequality with Neumann condition and a geometric application (preprint).
- Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598 (French). MR 448404
- Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–1238. MR 500557, DOI 10.1090/S0002-9904-1978-14553-4
- J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092. MR 301504, DOI 10.1512/iumj.1971.20.20101
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 821-832
- MSC: Primary 53A05
- DOI: https://doi.org/10.1090/S0002-9939-1990-0990415-9
- MathSciNet review: 990415