A generalization of Brøndsted’s results and its applications
HTML articles powered by AMS MathViewer
- by Noriko Mizoguchi
- Proc. Amer. Math. Soc. 108 (1990), 707-714
- DOI: https://doi.org/10.1090/S0002-9939-1990-0991704-4
- PDF | Request permission
Abstract:
We generalize Brøndsted’s results in [2] and [3] in order to obtain uniform space versions of Caristi’s fixed point theorem, Ekeland’s variational principle and the drop theorem. Moreover, it is applied to weak convergence of random iterations.References
- I. Amemiya and T. Andô, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239–244. MR 187116
- Arne Brøndsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335–341. MR 380343, DOI 10.2140/pjm.1974.55.335
- Arne Brøndsted, Common fixed points and partial orders, Proc. Amer. Math. Soc. 77 (1979), no. 3, 365–368. MR 545597, DOI 10.1090/S0002-9939-1979-0545597-5
- F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 197–228. MR 217658, DOI 10.1016/0022-247X(67)90085-6
- Ronald E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), no. 2, 319–332. MR 667060, DOI 10.1016/0022-247X(82)90195-0
- Ronald E. Bruck and Simeon Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), no. 4, 459–470. MR 470761
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- Josef Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. (4) 6 (1972), 369–375 (English, with Italian summary). MR 0317130
- J. Daneš, Equivalence of some geometric and related results of nonlinear functional analysis, Comment. Math. Univ. Carolin. 26 (1985), no. 3, 443–454. MR 817819
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. MR 346619, DOI 10.1016/0022-247X(74)90025-0
- Jean-Paul Penot, The drop theorem, the petal theorem and Ekeland’s variational principle, Nonlinear Anal. 10 (1986), no. 9, 813–822. MR 856865, DOI 10.1016/0362-546X(86)90069-6
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 707-714
- MSC: Primary 47H99; Secondary 46A99, 47H10, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1990-0991704-4
- MathSciNet review: 991704