On the surjectivity criterion for Buchsbaum modules
HTML articles powered by AMS MathViewer
- by Shiro Goto
- Proc. Amer. Math. Soc. 108 (1990), 641-646
- DOI: https://doi.org/10.1090/S0002-9939-1990-0998734-7
- PDF | Request permission
Abstract:
Let $R$ be a Cohen-Macaulay local ring with maximal ideal $m$ and suppose that $\dim R \geq 2$. Then $R$ is regular if (and only if) for any Buchsbaum $R$-module $M$ and for any integer $i,i \ne {\dim _R}M$, the canonical map ${\text {Ext}}_R^i\left ( {R/m,M} \right ) \to H_m^i\left ( M \right ): = \lim _{\substack {\to \\n}} \mathrm {Ext}_R^i \left (R/m^n, M \right )$ is surjective. The hypothesis that $R$ is Cohen-Macaulay is not superfluous. Two examples are given.References
- Shiro Goto, On Buchsbaum rings, J. Algebra 67 (1980), no. 2, 272–279. MR 602063, DOI 10.1016/0021-8693(80)90160-X
- M. Hochster, C. Huneke, and J. D. Sally (eds.), Commutative algebra, Mathematical Sciences Research Institute Publications, vol. 15, Springer-Verlag, New York, 1989. MR 1015509, DOI 10.1007/978-1-4612-3660-3
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Jürgen Stückrad, Über die kohomologische Charakterisierung von Buchsbaum-Moduln, Math. Nachr. 95 (1980), 265–272 (German). MR 592900, DOI 10.1002/mana.19800950124
- Jürgen Stückrad and Wolfgang Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math. 100 (1978), no. 4, 727–746. MR 509072, DOI 10.2307/2373908
- Naoyoshi Suzuki, Canonical duality for unconditioned strong $d$-sequences, J. Math. Kyoto Univ. 26 (1986), no. 4, 571–593. MR 864462, DOI 10.1215/kjm/1250520827
- Ngô Việt Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1–49. MR 846128, DOI 10.1017/s0027763000000416
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 641-646
- MSC: Primary 13H10; Secondary 13D03
- DOI: https://doi.org/10.1090/S0002-9939-1990-0998734-7
- MathSciNet review: 998734