A note on the quaternion group as Galois group
HTML articles powered by AMS MathViewer
- by Roger Ware
- Proc. Amer. Math. Soc. 108 (1990), 621-625
- DOI: https://doi.org/10.1090/S0002-9939-1990-0998741-4
- PDF | Request permission
Abstract:
The occurrence of the quaternion group as a Galois group over certain fields is investigated. A theorem of Witt on quaternionic Galois extensions plays a key role.References
- Jón Kr. Arason, Richard Elman, and Bill Jacob, Rigid elements, valuations, and realization of Witt rings, J. Algebra 110 (1987), no. 2, 449–467. MR 910395, DOI 10.1016/0021-8693(87)90057-3
- A. Fröhlich, Orthogonal representations of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math. 360 (1985), 84–123. MR 799658, DOI 10.1515/crll.1985.360.84
- Bill Jacob and Roger Ware, A recursive description of the maximal pro-$2$ Galois group via Witt rings, Math. Z. 200 (1989), no. 3, 379–396. MR 978598, DOI 10.1007/BF01215654
- T. Y. Lam, The algebraic theory of quadratic forms, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Reading, Mass., 1973. MR 0396410
- Ján Mináč, Quaternion fields inside Pythagorean closure, J. Pure Appl. Algebra 57 (1989), no. 1, 79–82. MR 984048, DOI 10.1016/0022-4049(89)90029-7
- Jean-Pierre Serre, L’invariant de Witt de la forme $\textrm {Tr}(x^2)$, Comment. Math. Helv. 59 (1984), no. 4, 651–676 (French). MR 780081, DOI 10.1007/BF02566371
- Roger Ware, When are Witt rings group rings? II, Pacific J. Math. 76 (1978), no. 2, 541–564. MR 568320
- Roger Ware, Quadratic forms and pro $2$-groups. II. The Galois group of the Pythagorean closure of a formally real field, J. Pure Appl. Algebra 30 (1983), no. 1, 95–107. MR 716238, DOI 10.1016/0022-4049(83)90042-7 E. Witt, Konstruktion von galoisschen Körpen der Charakteristik $p$ zu vorgegebener Gruppe der Ordnung ${p^f}$, J. Reine Angew. Math. 174 (1936), 237-245.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 621-625
- MSC: Primary 12F10; Secondary 11E81
- DOI: https://doi.org/10.1090/S0002-9939-1990-0998741-4
- MathSciNet review: 998741