Closure of invertible operators on a Hilbert space
HTML articles powered by AMS MathViewer
- by Richard Bouldin
- Proc. Amer. Math. Soc. 108 (1990), 721-726
- DOI: https://doi.org/10.1090/S0002-9939-1990-1000147-9
- PDF | Request permission
Abstract:
Although most of the characterizations of the closure of the invertible operators on a separable Hilbert space do not extend to a nonseparable Hilbert space, this note gives a characterization for an arbitrary Hilbert space that generalizes the separable case in a natural way. The new concept of essential nullity, which facilitates this characterization, should find other applications.References
- F. V. Atkinson, On relatively regular operators, Acta Sci. Math. (Szeged) 15 (1953), 38–56. MR 56835
- Richard Bouldin, The norm continuity properties of square roots, SIAM J. Math. Anal. 3 (1972), 206–210. MR 310673, DOI 10.1137/0503021
- Richard Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), no. 4, 513–517. MR 620264, DOI 10.1512/iumj.1981.30.30042
- Jacob Feldman and Richard V. Kadison, The closure of the regular operators in a ring of operators, Proc. Amer. Math. Soc. 5 (1954), 909–916. MR 68749, DOI 10.1090/S0002-9939-1954-0068749-2
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Robin Harte, Regular boundary elements, Proc. Amer. Math. Soc. 99 (1987), no. 2, 328–330. MR 870795, DOI 10.1090/S0002-9939-1987-0870795-5
- Saichi Izumino, Inequalities on operators with index zero, Math. Japon. 23 (1978/79), no. 5, 565–572. MR 530016
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 721-726
- MSC: Primary 47A05; Secondary 47D99
- DOI: https://doi.org/10.1090/S0002-9939-1990-1000147-9
- MathSciNet review: 1000147