Locally bounded noncontinuous linear forms on strong duals of nondistinguished Köthe echelon spaces
HTML articles powered by AMS MathViewer
- by Françoise Bastin and José Bonet
- Proc. Amer. Math. Soc. 108 (1990), 769-774
- DOI: https://doi.org/10.1090/S0002-9939-1990-1002152-5
- PDF | Request permission
Abstract:
In this note it is proved that if ${\lambda _1}(A)$ is any nondistinguished Köthe echelon space of order one and ${K_\infty } \simeq {({\lambda _1}(A))’_b}$ is its strong dual, then there is even a linear form :${K_\infty } \to {\mathbf {C}}$ which is locally bounded (i.e. bounded on the bounded sets) but not continuous. It is also shown that every nondistinguished Köthe echelon space contains a sectional subspace with a particular structure.References
- Françoise Bastin, On bornological $C\overline V(X)$ spaces, Arch. Math. (Basel) 53 (1989), no. 4, 394–398. MR 1016004, DOI 10.1007/BF01195220
- Klaus D. Bierstedt and José Bonet, Stefan Heinrich’s density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149–180. MR 944226, DOI 10.1002/mana.19881350115
- Klaus D. Bierstedt and Reinhold Meise, Distinguished echelon spaces and the projective description of weighted inductive limits of type ${\scr V}_d{\scr C}(X)$, Aspects of mathematics and its applications, North-Holland Math. Library, vol. 34, North-Holland, Amsterdam, 1986, pp. 169–226. MR 849552, DOI 10.1016/S0924-6509(09)70255-7
- Klaus-D. Bierstedt, Reinhold G. Meise, and William H. Summers, Köthe sets and Köthe sequence spaces, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980) North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam-New York, 1982, pp. 27–91. MR 691159
- Alexandre Grothendieck, Sur les espaces ($F$) et ($DF$), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 75542
- Manuel Valdivia, Topics in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 85, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 671092
- Dietmar Vogt, Distinguished Köthe spaces, Math. Z. 202 (1989), no. 1, 143–146. MR 1007744, DOI 10.1007/BF01180688
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 769-774
- MSC: Primary 46A45; Secondary 46A06, 46A20
- DOI: https://doi.org/10.1090/S0002-9939-1990-1002152-5
- MathSciNet review: 1002152