Mean ergodic theorems for nonlinear operators
HTML articles powered by AMS MathViewer
- by Rainer Wittmann
- Proc. Amer. Math. Soc. 108 (1990), 781-788
- DOI: https://doi.org/10.1090/S0002-9939-1990-1004427-2
- PDF | Request permission
Abstract:
The mean ergodic theorem is shown for nonlinear operators $T:K \to K$ with $||Tx + Ty|| \leq ||x + y||$ for any $x,y \in K$ where $K$ may be an arbitrary subset of a Hilbert space $H$.References
- Jean-Bernard Baillon, Quelques propriétés de convergence asymptotique pour les contractions impaires, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 8, Aii, A587–A590. MR 428124
- Ronald E. Bruck, Asymptotic behavior of nonexpansive mappings, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemp. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1983, pp. 1–47. MR 728592, DOI 10.1090/conm/018/728592 B. Djafari-Rouhani and S. Kakutani, Ergodic theorems for nonexpansive nonlinear operators in a Hilbert space (unpublished preprint 1984).
- Norimichi Hirano and Wataru Takahashi, Nonlinear ergodic theorems for nonexpansive mappings in Hilbert spaces, Kodai Math. J. 2 (1979), no. 1, 11–25. MR 531784
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Ulrich Krengel and Michael Lin, Order preserving nonexpansive operators in $L_1$, Israel J. Math. 58 (1987), no. 2, 170–192. MR 901177, DOI 10.1007/BF02785675
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 781-788
- MSC: Primary 47H09; Secondary 47A35
- DOI: https://doi.org/10.1090/S0002-9939-1990-1004427-2
- MathSciNet review: 1004427