Asymptotic depth and connectedness in projective schemes
HTML articles powered by AMS MathViewer
- by M. Brodmann
- Proc. Amer. Math. Soc. 108 (1990), 573-581
- DOI: https://doi.org/10.1090/S0002-9939-1990-1031674-6
- PDF | Request permission
Abstract:
Let $I \subseteq \mathfrak {m}$ be an ideal of a local noetherian ring $\left ( {R,\mathfrak {m}} \right )$. Consider the exceptional fiber ${\pi ^{ - 1}}\left ( {V\left ( 1 \right )} \right )$ of the blowing-up morphism \[ \pi :\operatorname {Proj}\left ( {{ \oplus _{n \geq 0}}{I^n}} \right ) \to \operatorname {Spec}\left ( R \right )\] and the special fiber ${\pi ^{ - 1}}\left ( \mathfrak {m} \right )$. We show that the complement set \[ {\pi ^{ - 1}}\left ( {V\left ( I \right )} \right ) - {\pi ^{ - 1}}\left ( \mathfrak {m} \right )\] is highly connected if the asymptotic depth of the higher conormal modules ${I^n}/{I^{n + 1}}$ is large.References
- M. Brodmann, Asymptotic stability of $\textrm {Ass}(M/I^{n}M)$, Proc. Amer. Math. Soc. 74 (1979), no. 1, 16–18. MR 521865, DOI 10.1090/S0002-9939-1979-0521865-8
- M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 1, 35–39. MR 530808, DOI 10.1017/S030500410000061X
- M. Brodmann, Some remarks on blow-up and conormal cones, Commutative algebra (Trento, 1981) Lecture Notes in Pure and Appl. Math., vol. 84, Dekker, New York, 1983, pp. 23–37. MR 686938
- Markus Brodmann, Rees rings and form rings of almost complete intersections, Nagoya Math. J. 88 (1982), 1–16. MR 683240
- M. Brodmann, A few remarks on blowing-up and connectedness, J. Reine Angew. Math. 370 (1986), 52–60. MR 852509, DOI 10.1515/crll.1986.370.52
- Markus Brodmann and Josef Rung, Local cohomology and the connectedness dimension in algebraic varieties, Comment. Math. Helv. 61 (1986), no. 3, 481–490. MR 860135, DOI 10.1007/BF02621928
- Lindsay Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369–373. MR 304377, DOI 10.1017/s0305004100047198 A. Grothendieck, EGA. III, Inst. Hautes Études Sci. Publ. Math. 11 (1961). —, EGA. IV, Inst. Hautes Études Sci. 24 (1969).
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 573-581
- MSC: Primary 13C15; Secondary 13H99, 14A15
- DOI: https://doi.org/10.1090/S0002-9939-1990-1031674-6
- MathSciNet review: 1031674