Fixed points of unitary $\textbf {Z}/p^ s$-manifolds
HTML articles powered by AMS MathViewer
- by Stefan Waner and Yihren Wu
- Proc. Amer. Math. Soc. 108 (1990), 847-853
- DOI: https://doi.org/10.1090/S0002-9939-1990-1031677-1
- PDF | Request permission
Abstract:
Let $G = {\mathbf {Z}}/{p^s}$ ($p$ an odd prime). We show that restricting the local representations in a unitary $G$-manifold $M$ with isolated fixed points results in severe restrictions on the number of fixed points (counted with the sign of their orientation), paralleling results obtained by Conner and Floyd in the case $G = {\mathbf {Z}}/p$. Specifically, the number of noncancelling fixed points is either zero or divisible by ${p^n}$, where $n \to \infty$ as the dimension of $M \to \infty$. This result also parallels phenomena in framed $G$-manifolds, as discussed by the first author in a previous paper.References
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43โ69. MR 397797, DOI 10.1017/S0305004100049410
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Gรถttingen-Heidelberg, 1964. MR 0176478
- Peter B. Gilkey, The eta invariant and the equivariant unitary bordism of spherical space form groups, Compositio Math. 65 (1988), no.ย 1, 33โ50. MR 930146
- Czes Kosniowski, A note on $\textrm {RO}(G)$ graded $G$ bordism theory, Quart. J. Math. Oxford Ser. (2) 26 (1975), no.ย 104, 411โ419. MR 388418, DOI 10.1093/qmath/26.1.411 W. Pulikowsi, $RO(G)$-graded $G$-bordism theory, Bull. Acad. Polon. Sci. Math. Astronom. Phys. 11 (1973), 991-999.
- Stefan Waner, Fixed sets of framed $G$-manifolds, Trans. Amer. Math. Soc. 298 (1986), no.ย 1, 421โ429. MR 857451, DOI 10.1090/S0002-9947-1986-0857451-8
- Stefan Waner, Equivariant $R\textrm {O}(G)$-graded bordism theories, Topology Appl. 17 (1984), no.ย 1, 1โ26. MR 730020, DOI 10.1016/0166-8641(84)90019-1
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 108 (1990), 847-853
- MSC: Primary 57R85; Secondary 55P10, 57S25
- DOI: https://doi.org/10.1090/S0002-9939-1990-1031677-1
- MathSciNet review: 1031677