On the equation $\textrm {div} (\vert \nabla u\vert ^ {p-2}\nabla u)+\lambda \vert u\vert ^ {p-2}u=0$
HTML articles powered by AMS MathViewer
- by Peter Lindqvist
- Proc. Amer. Math. Soc. 109 (1990), 157-164
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007505-7
- PDF | Request permission
Addendum: Proc. Amer. Math. Soc. 116 (1992), 583-584.
Abstract:
The first eigenvalue $\lambda = {\lambda _1}$ for the equation $\operatorname {div} ({\text {|}}\nabla u{{\text {|}}^{p - 2}}\nabla u{\text {) + }}\lambda {\text {|}}u{{\text {|}}^{p - 2}}u = 0$ is simple in any bounded domain. (Through the nonlinear counterpart to the Rayleigh quotient ${\lambda _1}$ is related to the Poincaré inequality.)References
- Aomar Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- J. P. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the $p$-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1430. MR 912211, DOI 10.1080/03605308708820534
- E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850. MR 709038, DOI 10.1016/0362-546X(83)90061-5
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383, DOI 10.1007/BF02684590
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486, DOI 10.1515/9781400882663
- Friedrich Riesz and Béla Sz.-Nagy, Vorlesungen über Funktionalanalysis, Hochschulbücher für Mathematik, Band 27, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). Translation by Siegfried Brehmer and Brigitte Mai,. MR 0083695
- Shigeru Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 403–421 (1988). MR 951227
- S. L. Sobolev, Applications of functional analysis in mathematical physics, Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by F. E. Browder. MR 0165337, DOI 10.1090/mmono/007 F. de Thélin, Quelques résultais d’existence et de non-existence pour une E. D. P. elliptique non linéaire, C. R. Acad. Sci. Paris. Sér. I Math. 299 (1984), 911-914.
- François de Thélin, Sur l’espace propre associé à la première valeur propre du pseudo-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 8, 355–358 (French, with English summary). MR 860838
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, DOI 10.1002/cpa.3160200406
- Mohammed Guedda and Laurent Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), no. 8, 879–902. MR 1009077, DOI 10.1016/0362-546X(89)90020-5
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 157-164
- MSC: Primary 35J60; Secondary 35P05
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007505-7
- MathSciNet review: 1007505