On the equation
Author:
Peter Lindqvist
Journal:
Proc. Amer. Math. Soc. 109 (1990), 157-164
MSC:
Primary 35J60; Secondary 35P05
DOI:
https://doi.org/10.1090/S0002-9939-1990-1007505-7
Addendum:
Proc. Amer. Math. Soc. 116 (1992), 583-584.
MathSciNet review:
1007505
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The first eigenvalue for the equation
is simple in any bounded domain. (Through the nonlinear counterpart to the Rayleigh quotient
is related to the Poincaré inequality.)
- [1] Aomar Anane, Simplicité et isolation de la première valeur propre du 𝑝-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728 (French, with English summary). MR 920052
- [2] J. P. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the 𝑝-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1430. MR 912211, https://doi.org/10.1080/03605308708820534
- [3] E. DiBenedetto, 𝐶^{1+𝛼} local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850. MR 709038, https://doi.org/10.1016/0362-546X(83)90061-5
- [4] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
- [5] G. D. Mostow, Quasi-conformal mappings in 𝑛-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383
- [6] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
- [7] Friedrich Riesz and Béla Sz.-Nagy, Vorlesungen über Funktionalanalysis, Hochschulbücher für Mathematik, Bd. 27, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). Translation by Siegfried Brehmer and Brigitte Mai,. MR 0083695
- [8] Shigeru Sakaguchi, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 3, 403–421 (1988). MR 951227
- [9] S. L. Sobolev, Applications of functional analysis in mathematical physics, Translated from the Russian by F. E. Browder. Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. MR 0165337
- [10] F. de Thélin, Quelques résultais d'existence et de non-existence pour une E. D. P. elliptique non linéaire, C. R. Acad. Sci. Paris. Sér. I Math. 299 (1984), 911-914.
- [11] François de Thélin, Sur l’espace propre associé à la première valeur propre du pseudo-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 8, 355–358 (French, with English summary). MR 860838
- [12] Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, https://doi.org/10.1016/0022-0396(84)90105-0
- [13] Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, https://doi.org/10.1002/cpa.3160200406
- [14] Mohammed Guedda and Laurent Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), no. 8, 879–902. MR 1009077, https://doi.org/10.1016/0362-546X(89)90020-5
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J60, 35P05
Retrieve articles in all journals with MSC: 35J60, 35P05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-1007505-7
Article copyright:
© Copyright 1990
American Mathematical Society