WHEN IS A FLAT ALGEBRA OF FINITE TYPE?

PETER SCHENZEL

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Let A denote a commutative Noetherian domain. For an intermediate ring $A \subseteq B \subseteq A_x$ flat over A, it is shown that B is an A-algebra of finite type. This is followed by an intrinsic description of the flatness of B over A and the asymptotic behavior of certain prime divisors. As an application, flat ideal-transforms are characterized.

Let A denote a commutative Noetherian domain. Let $Q(A)$ be the quotient field of A. By an intermediate ring we understand a commutative ring B with $A \subseteq B \subseteq Q(A)$. In his paper [R], Richman proved that an intermediate ring B is a Noetherian ring provided B is flat over A. In general B is not an A-algebra of finite type. For instance, take A the integers and B the rationals. If B is an intermediate ring of finite type over A, then $B \subseteq A_x$ for a certain $0 \neq x \in A$. This necessary condition is also sufficient for an A-flat intermediate ring B being of finite type over A as shown in the following

Theorem 1. Let B be an intermediate ring with $A \subseteq B \subseteq A_x$, $x \neq 0$. Suppose that B is flat as an A-module. Then B is an A-algebra of finite type.

Here A_x denotes the localization of A with respect to $\{x^n : n \in \mathbb{N}\}$. To prove Theorem 1 we need a few preliminaries about certain asymptotic prime divisors and flatness.

Proposition. Let B be an intermediate ring with $A \subseteq B \subseteq A_x$. Then

$$\text{Ass}_A(x^n B \cap A/x^n A), \ n \geq 1,$$

forms an increasing set of prime ideals stabilizing for large n to a finite set equal to $\text{Ass}_A(B/A)$.

Proof. First we will show that the considered sets of associated prime ideals are increasing. This follows easily by virtue of the monomorphism

$$x^n B \cap A/x^n A \to x^{n+1} B \cap A/x^{n+1} A, \quad n \geq 1,$$
defined by \(r + x^n A \mapsto rx + x^{n+1} A \). Because of

\[
\text{Ass}_A(x^n B \cap A/x^n A) \subseteq \text{Ass}_A A/x^n A = \text{Ass}_A A/x A,
\]
ote that \(x \) is a nonzero divisor, the desired sets stabilize for large \(n \) to a finite set.

Now let \(P \in \text{Ass}_A(x^n B \cap A/x^n A) \). Then there exists an element \(r \in x^n B \cap A/x^n A \) such that \(P = x^n A : r \). Put \(q = r/x^n \in B \). It follows that \(q \notin A \) and \(P = A : q \), as can be easily seen. That is, \(P \in \text{Ass}_A(B/A) \). In order to prove the reverse inclusion let \(P \in \text{Ass}_A(B/A) \). Then there is an element \(q = r/x^n \in B \setminus A, r \in A, \) such that \(P = A : q \). As above, \(P = x^n A : r \) and \(r \in x^n B \cap A/x^n A \). That is, \(P \in \text{Ass}_A(x^n B \cap A/x^n A) \), now, by the previous consideration the claim follows. \(\square \)

As an additional feature to our investigations we will characterize when an intermediate ring \(A \subseteq B \subseteq A_x \) is flat over \(A \). This is done in

Theorem 2. An intermediate ring \(B \) with \(A \subseteq B \subseteq A_x, \ x \neq 0, \) is flat as an \(A \)-module if and only if \(B = PB \) for all \(P \in \text{Ass}_A(B/A) \).

Proof. Suppose \(B \) is flat as an \(A \)-module. Let \(PB \) be a proper ideal for some \(P \in \text{Ass}_A(B/A) \). By the Going Down theorem, see [M], there exists a prime ideal \(Q \) minimal over \(PB \) such that \(P = Q \cap A \). The induced homomorphism \(A_P \to B_Q \) makes \(B_Q \) into a faithful flat \(A_P \)-module. Because of \(B_Q \subseteq Q(A_P) \) it yields \(B_Q = A_P \) and \(A_P = B_P \), contracting the choice of \(P \) as an element of \(\text{Ass}_A(B/A) \). Now suppose that \(B = PB \) for all prime ideals \(P \in \text{Ass}_A(B/A) \). To show that \(B \) is flat over \(A \), it is enough to prove that \(B_Q \) is flat over \(A_P \) for all \(Q \in \text{Spec} B \) and \(P = Q \cap A \), see [M, (3.J)]. Let \(Q \in \text{Spec} B \). Then \(P = Q \cap A \notin \text{Ass}_A(B/A) \) because \(Q \supseteq PB \) is a proper ideal. If \(P \notin \text{Supp}_A(B/A) \), then \(A_P = B_P = B_Q \) and \(B_Q \) is flat over \(A_P \). Suppose \(P \in \text{Supp}_A(B/A) \). Then there is a prime ideal \(P' \in \text{Ass}_A(B/A) \) such that \(P' \subseteq P \). Note that \(\text{Supp}_A(B/A) \) and \(\text{Ass}_A(B/A) \) have the same set of minimal prime ideals, see [B, §1, 3, Corollary 1]. But then

\[
B = P'B \subseteq PB \subseteq Q \subseteq B,
\]
contracting the choice of \(Q \). \(\square \)

With the previous notations, set

\[
I = x^n A : (x^n B \cap A),
\]
where \(n \) is chosen such that \(\text{Ass}_A(x^n B \cap A/x^n A) \) stabilizes. Note that \(I = \text{Ann}_A(x^n B \cap A/x^n A) \).

Corollary 1. An intermediate ring \(B \) as above is flat as an \(A \)-module if and only if \(B = IB \).

Proof. Because \(\text{Ass}_A(B/A) = \text{Ass}_A(x^n B \cap A/x^n A) \) it follows, see [B, §1, 4, Theorem 2], that \(I \) and \(\text{Ass}_A(B/A) \) have the same set of minimal prime ideals. Then the claim follows by the theorem. \(\square \)
WHEN IS A FLAT ALGEBRA OF FINITE TYPE?

For an ideal I of A let

$$T(I) = \{ q \in \mathbb{Q}(A) : I^n q \subseteq A \text{ for some } n \in \mathbb{N} \}$$

denote the ideal-transform of A with respect to I. Note that $T(I)$ is an intermediate ring with $A \subseteq T(I) \subseteq A_x$, $0 \neq x \in I$.

Corollary 2. The ideal-transform $T(I)$ is flat over A if and only if $T(I) = JT(I)$, where J denotes the intersection of those primary components of a reduced primary decomposition of xA, $0 \neq x \in I$, for which the associated prime ideals contain I.

Proof. First note that

$$xT(I) \cap A = xA: \langle I \rangle = \bigcup_{k \geq 1} xA: I^k.$$

Furthermore $\text{Ass}_A(x^nT(I) \cap A/x^nA) = \text{Ass} A/xA \cap V(I)$ for all $n \geq 1$. As can be easily seen, $J = xA: (xA: \langle I \rangle)$. Because J and $\text{Ann}_A(x^nT(I) \cap A/x^nA)$ have the same radical, Corollary 1 proves the claim. □

The previous corollary generalizes part of [E, (3.2)]. For a further investigation about the flatness of ideal-transforms see also [S].

Corollary 3. With the notations of Corollary 1, an intermediate ring B is flat over A if and only if $T(I) = B$ and $\text{Spec} A \setminus V(I)$ is an affine scheme.

Proof. It holds in general that if I is an ideal of a Noetherian domain A, then the quasi-affine scheme $\text{Spec} A \setminus V(I)$ is affine if and only if $T(I) = IT(I)$, see [H]. By Corollary 1 this proves the “only if” part of the statement. Assume that B is flat over A, i.e., $B = IB$ by Corollary 1. It is enough to prove that $T(I) = B$. First note that $T(I) \subseteq T(IB) = B$. On the other side let $r/x^n \in B$. Then $r \in x^nB \cap A$. Because

$$\text{Supp}_A(x^nB \cap A/x^nA) \subseteq V(I)$$

there is an integer m that $I^m r \subseteq x^nA$, i.e., $r/x^n \in T(I)$ as required. □

In particular, let J be an ideal of a Noetherian domain A such that $\text{Spec} A \setminus V(J)$ is an affine scheme. Then $T(J)$ is flat over A and an A-algebra of finite type by Theorem 1.

Proof of Theorem 1. Let $I = x^nA: (x^nB \cap A)$ as defined above. By [B], $\text{Ass}_A(B/A)$ and $\text{Supp}_A(B/A)$ have the same set of minimal prime ideals containing I. Therefore $\text{Supp}_A(B/A) \subseteq V(I)$ because of $I = \text{Ann}_A(x^nB \cap A/x^nA)$ and the proposition. By Corollary 1, $B = IB$, i.e., there is a decomposition of the unit

$$1 = \sum_{i=1}^s r_i q_i, \quad r_i \in I, \quad q_i \in B, \quad i = 1, \ldots, s.$$

Now we claim that $B = A[q_1, \ldots, q_s]$. Clearly $B \supseteq A[q_1, \ldots, q_s]$. Let $y \in B$. Because of $\text{Supp}_A(B/A) \subseteq V(I)$ there is an integer n such that $I^n y \subseteq A$. The
\(n \)th power of the above relation yields
\[
1 = \sum_{|a|=n} r_a q^a, \quad a = (a_1, \ldots, a_s),
\]
with \(r_a \in I^n \). Therefore
\[
y = \sum_{|a|=n} (r_a y) q^a \in A[q_1, \ldots, q_s],
\]
as required. \(\Box \)

References

Sektion Mathematik der Martin-Luther-Universität Halle-Wittenberg, Postfach, Halle, DDR-4010, German Democratic Republic