On ordered $\Lambda$-bounded variation
HTML articles powered by AMS MathViewer
- by Franciszek Prus-Wiśniowski
- Proc. Amer. Math. Soc. 109 (1990), 375-383
- DOI: https://doi.org/10.1090/S0002-9939-1990-1004422-3
- PDF | Request permission
Abstract:
An example is given of a continuous real function that is of ordered $\Lambda$-bounded variation but not of $\Lambda$-bounded variation. No special assumptions on $\Lambda$ are required.References
- C. L. Belna, On ordered harmonic bounded variation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 441–444. MR 581000, DOI 10.1090/S0002-9939-1980-0581000-5 G. H. Hardy, J. E. Littlewood, and G. Pölya, Inequalities, 2nd ed., Cambridge University Press, 1964.
- Daniel Waterman, On $L$-bounded variation, Studia Math. 57 (1976), no. 1, 33–45. MR 417355, DOI 10.4064/sm-57-1-33-45 —, $\Lambda$-bounded variation : recent results and unsolved problems, Real Anal. Exchange 4 (1978-79), 69-75.
- Daniel Waterman, On the note of C. L. Belna, Proc. Amer. Math. Soc. 80 (1980), no. 3, 445–447. MR 581001, DOI 10.1090/S0002-9939-1980-0581001-7 —, Generalized bounded variation—recent results and open questions, Real Anal. Exchange 5 (1979-80), 148-150.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 375-383
- MSC: Primary 26A45
- DOI: https://doi.org/10.1090/S0002-9939-1990-1004422-3
- MathSciNet review: 1004422