BOUNDEDNESS OF THE CALDERÓN-ZYGMUND
SINGULAR INTEGRAL OPERATORS ON Ba SPACES

WEN-DONG CHANG

(Communicated by Palle E. T. Jorgensen)

Abstract. A condition for the boundedness of a Calderón–Zygmund operator on a new class of Banach function spaces is studied.

1. Introduction

A new class of function spaces, denoted by Ba, was introduced by X. X. Ding in [2]. It includes not only the standard Lebesgue integrable spaces, some familiar Orlicz spaces, Orlicz–Sobolev spaces, but also many useful new function spaces. In the past few years, many results have been obtained pertaining to Ba spaces and have been used in both classical analysis and other branches of mathematics. (See, for example, [2–5], [8].)

The main result of this paper is the proof of the boundedness of the Calderón–Zygmund singular integral operator (we will call it C–Z operator), especially the boundedness of the well-known Riesz transformation in Ba spaces.

2. The basic idea of Ba spaces

Let $B = \{B_1, B_2, \ldots, B_m, \ldots\}$; $a = \{a_1, a_2, \ldots, a_m, \ldots\}$. Here, B is a sequence of Banach function spaces, and a is a sequence of non-negative real numbers. Moreover, let $\phi(z) = \sum_{m=1}^{\infty} a_m z^m$ be an entire function. For $f \in \bigcap_{m=1}^{\infty} B_m$, we form a power series as follows

$$I(f, \alpha) = \sum_{m=1}^{\infty} a_m \|f\|_{B_m}^m \alpha^m.$$

Here $\| \cdot \|_{B_m}$ stands for the norm in the B_m space. Now denote by R_f the radius of convergence of the series $I(f, \alpha)$ and by Ba the following measurable function set

$$Ba = \left\{ f \mid f \in \bigcap_{m=1}^{\infty} B_m, R_f \neq 0 \right\}.$$

Received by the editors June 20, 1989 and, in revised form, July 24, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 47B38, 44A15.

©1990 American Mathematical Society
0002-9939/90 $1.00 + .25$ per page
The set \(B_a \) is proved to be a Banach space when we define the norm of an element \(f \in B_a \) by \(\| f \|_{B_a} = \inf_{\alpha > 0} (1/\alpha) |I(f, \alpha)| \leq 1 \). For a detailed explanation, see [2].

In this paper we will restrict the Banach spaces \(B_m = L_{p_m}(\mathbb{R}^n) \), \(m = 1, 2, \ldots \), and \(p_m > 1 \). For simplicity, we will denote \(\| \cdot \|_{B_a} \) by \(\| \cdot \| \) and \(\| \cdot \|_{L_{p_m}} \) by \(\| \cdot \|_{p_m} \).

3. The boundedness of the C-Z operator

We consider the following C-Z operator \(T \) on \(L_p(\mathbb{R}^n) \)

\[
T(f)(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} K(y) f(x - y) \, dy ,
\]

where \(K(y) \) is a smooth function defined in \(\mathbb{R}^n \) except at \(x = 0 \). \(K(y) \) is also positively homogeneous of order \(-n \) and its integral mean on the unit sphere \(S^{n-1} \) is zero.

It is well known that the operator \(T \) is bounded on \(L_p(\mathbb{R}^n) \) and

\[
(1) \quad \| T(f) \|_p \leq A_p \| f \|_p ,
\]

where \(A_p \) only depends on \(p \) and the dimension \(n \). After an easy computation, we see that \(A_p \) is continuous in \(p \) and

\[
(2) \quad A_p = O(1/(p - 1)) \text{ as } p \to 1^+ \quad \text{and} \quad A_p = O(p) \text{ as } p \to \infty .
\]

See, for example, [1] and [7]. Now we prove

Theorem 1. If there exists two positive constants \(\alpha \) and \(\beta \) such that the \(B_a \) spaces satisfy the following condition

\[
(3) \quad 1 < \alpha < p_m < \beta \quad \text{for all } a_m \neq 0 ,
\]

then the C-Z operator \(T \) is bounded on the \(B_a \) spaces.

Proof. if \(\alpha < p < \beta \) then \(\exists K > 0 \) such that \(A_p \leq K \) by the continuity. So if (3) is satisfied, we have \(A_{p_m} \leq K \), \(m = 1, 2, \ldots \). By definition of the \(B_a \) norm, we can easily see

\[
I(f, 1/\|f\|) = \sum_{m=1}^{\infty} a_m \| f \|_{p_m}^m / \| f \|_{p_m}^m \leq 1 , \quad \text{for } f \in B_a ,
\]

so we have the following estimates

\[
I(T(f), 1/K \|f\|) = \sum a_m \| T(f) \|_{p_m}^m / (K \| f \|)^m \leq \sum a_m A_{p_m}^m \| f \|_{p_m}^m / (k \| f \|)^m \leq 1 ,
\]

therefore

\[
\| T(f) \| = \inf_{c > 0} (1/c) I(T(f), c) \leq 1 \leq K \| f \| , \quad \text{for } f \in B_a .
\]

The theorem has been proved. \(\square \)
People believe that the sufficient condition (3) for the boundedness of C-Z operator is also necessary. But the proof of this needs a more careful estimate on the constants of the L_p boundedness. We will prove this for a well-known special kind C-Z operator, the Riesz transformation, in the next section.

4. THE BOUNDEDNESS OF R_j IN B_a SPACES

Let $f \in L_p$, $1 < p < \infty$, the n-dimensional Riesz transformation of f is defined by

$$(R_j f)(x) = C_n \int_{\mathbb{R}^n} (x_j - y_j)/|x - y|^{n+1} f(y) \, dy, \quad j = 1, 2, \ldots, n,$$

here

$$C_n = \Gamma \left(\frac{n+1}{2} \right) / \left(n \left(\frac{n+1}{2} \right) \right).$$

For any positive number $l > 0$, we define two regions $I(l)$ and $J(l)$ in \mathbb{R}^n,

$I(l) = \{x||x| \leq l, x_i > 0, i = 1, 2, \ldots, n\},$

$J(l) = \{x||x| > 2l, 0 < \theta_j < \pi/4\},$

where θ_j is the angle between $\overrightarrow{\partial \delta}$ and the jth axis. (See Figure 1 below.)

Now we define the function $f_i(x)$ by

$$f_i(x) = \begin{cases} 1 & \text{if } x \in I(l), \\ 0 & \text{otherwise}. \end{cases}$$

Lemma.

(4) $\|R_j f(l(x))\|_p \geq B(p)\|f_i(x)\|_p$ for $1 < p < 2$,

$B(p)$ is independent of l and $B(p) \to \infty$ as $p \to 1^+$, and

(5) $\|R_j f_i(x)\|_p \geq C(p)\|f_i(x)\|_p$ for $2 \leq p < \infty$,

$C(p)$ is independent of l and $C(p) \to \infty$ as $p \to +\infty$.

Note the relationship between $B(p)$, $C(p)$, and the A_p in (2). (Also see [6, 7].)
Proof of the lemma.

\[R_{j}f_{l}(x) = C_{n} \int_{\mathbb{R}^{n}} (x_{j} - y_{j})/|x - y|^{n+1} f_{l}(y) \, dy = C_{n} \int_{I(l)} (x_{j} - y_{j})/|x - y|^{n+1} \, dy \, . \]

For \(y \in I(l) \) and \(x \in J(l) \), \(x_{j} - y_{j} + l \geq x_{j} \) and \(x_{j}/|x| = \cos \theta_{j} \geq \cos \pi/4 = \sqrt{2}/2 \), so we have \(x_{j} - y_{j} \geq (\sqrt{2}/2)|x| - l \geq (\sqrt{2}/2)|x| - |x|/2 = (\sqrt{2}/2 - 1/2)|x| \) and \(|x - y| \leq x + l \leq 2|x| \), and so for any \(x \in J(l) \)

\[|R_{j}f_{l}(x)| \geq \left[C_{n}(\sqrt{2} - 1)/2^{n+2} \right] \int_{I(l)} 1/|x|^{n} \, dy \]

the constant \(C \) is defined by

\[\int_{y \in I(l)} dy = C \int_{r=0}^{l} r^{n-1} \, dr = Cl^{n}/n \, . \]

Denoting the constant \(C_{n}(\sqrt{2} - 1)C/n2^{n+2} \) by \(C' \), we have the following estimates,

\[\|R_{j}f_{l}(x)\|_{p} \geq \left(\int_{x \in J(l)} |R_{j}f_{l}(x)|^{p} \, dx \right)^{1/p} \]

\[\geq C'l^{n} \left(\int_{x \in J(l)} |x|^{-np} \, dx \right)^{1/p} \]

\[= C'l^{n} \left(C'' \int_{r=2l}^{\infty} r^{n(1-p)-1} \, dr \right)^{1/p} \]

\[= C'(C'')^{1/p} l^{n} \left((2l)^{n-np} / (np - n) \right)^{1/p} \]

\[= \left[C'(C'')^{1/p} 2^{(n-np)/p} / (np - n)^{1/p} \right]^{np/p} \]

\[= \left[C'(C'')^{1/p} 2^{(n-np)/p} / C^{1/p} (np - n)^{1/p} \right]^{np/p} \|f_{l}\|_{p} \, , \]

where we have used \(\|f_{l}\|_{p} = (Cl^{n}/n)^{1/p} \) and \(C'' \) is a constant independent of \(l \) and \(p \). If we let \(B(p) = C'(C'')^{1/p} 2^{(n-np)/p} / C^{1/p} (np - n)^{1/p} \), then it is easy to see that \(B(p) \to \infty \) as \(p \to 1^{+} \), therefore (4) is proved.

It is easy to see that \(\|R_{j}f_{l}\|_{p}/\|f_{l}\| \) is independent of \(l \). By using a similar estimate, (5) can also be proved. But there is a simple way to see (5) is true. If it were not so, we would have a constant \(k \) such that

\[\|R_{j}f_{l}(x)\|_{p_{m}} \leq k\|f_{l}(x)\|_{p_{m}}, \quad m = 1, 2, \ldots, \quad \text{and} \quad p_{m} \to \infty \quad \text{as} \quad m \to \infty \, . \]

Here \(k \) is independent of \(p \) and \(l \). In particular \(\left(\int_{I(l)} |R_{j}f_{l}|^{p_{m}} d\lambda \right)^{1/p_{m}} < k\|f_{l}(x)\|_{p_{m}} \). Now letting \(m \to \infty \), we have (note \(\|f_{l}(x)\|_{\infty} = 1 \)) \(|R_{j}f_{l}(x)| \leq k \) almost everywhere in \(I(l) \), or \(\int_{I(l)} |x_{j} - y_{j}|/|x - y|^{n+1} \, dy \leq k \). Let \(x \to 0 \), we have \(\int_{I(l)} |y|/|y|^{n+1} \, dy \leq k \). This is a contradiction since the integration is divergent. \(\square \)
We are now ready to prove the main theorem.

Theorem 2. The Riesz transformation \(R_j \) \(j = 1, 2, \ldots, n \) are bounded operators in \(Ba \) spaces if and only if there exist constants \(\alpha \) and \(\beta \) such that (3) in §3 is satisfied.

Proof. The sufficiency has been proved in §3. We now prove the necessity of the condition (3).

We assume there exists a constant \(A \), independent of \(f \), such that

\[
\| R_j f \| \leq A \| f \| \quad \text{for all } f \in Ba.
\]

By using (4) in the lemma and (7), we have

\[
\sum_{m=1}^{\infty} \left\{ a_m (B(p_m) \| f_j(x) \|_{p_m})^m / (A \| f_j \|)^m \right\} < \sum_{m=1}^{\infty} \left\{ a_m (\| R_j f_j(x) \|_{p_m})^m / (\| R_j f_j \|)^m \right\} = 1.
\]

In particular, \(a_{1/m} B(p_m) \| f_j \|_{p_m} / (A \| f_j \|) \leq 1 \), or

\[
a_{1/m} \| f_j \|_{p_m} / \| f_j \| \leq A / B(p_m).
\]

Note that as \(p \to 1 + 0 \), \(B(p) \to \infty \), so if \(\alpha \) in (3) does not exist, we may find a \(p_m > 1 \) such that

\[
a_{1/m} \| f_j \|_{p_m} / \| f_j \| < \frac{1}{2} \quad \text{for } p_m \in (1, p_m'] \quad \text{and } l \in (0, \infty).
\]

Without loss of generality, we assume there is \(a_{m''} \) such that \(a_{m''} \neq 0 \), \(p_{m''} < p_{m'} \), and

\[
0 < a_{1/m''} \| f_j \|_{p_{m''}} / \| f_j \| < \frac{1}{2}.
\]

Now choose \(l_0 \) large enough such that \(Cl_0^n / n > 1 \) and

\[
M (Cl_0^n / n)^{1/p_{m'}} < a_{1/m''} (Cl_0^n / n)^{1/p_{m''}},
\]

where \(M = \sup(a_{1/m}, m = 1, 2, \ldots) < \infty \), \(C \) is defined by (6). We can see for any \(p_m > p_{m'} \),

\[
a_{1/m} (Cl_0^n / n)^{1/p_m} \leq M (Cl_0^n / n)^{1/p_m} \leq a_{1/m''} (Cl_0^n / n)^{1/p_{m''}},
\]

so, by using (10) and the fact \(\| f_{l_0} \|_p = (Cl_0^n / n)^{1/p} \), we have

\[
a_{1/m} \| f_{l_0} \|_{p_m} / \| f_{l_0} \| \leq a_{1/m''} \| f_{l_0} \|_{p_{m''}} / \| f_{l_0} \| < 1/2 \quad P_m > P_{m'}.
\]

(9) and (11) together give

\[
\sum_{m=1}^{\infty} a_m \| f_{l_0} \|_{p_m} / \| f_{l_0} \|^m < \sum_{m=1}^{\infty} (1/2)^m = 1,
\]
which is a contradiction to the definition of the β norm, since we can easily check that $I(f_{0}, 1/\|f_{0}\|) = 1$.

Now we proceed to prove the existence of the β in the theorem. Using (5) in the lemma and (7), we obtain (by using similar estimates)

$$\sum \{a_m(C(p_m)\|f_i\|_p/p_m)^m/(A\|f_i\|^m)\} \leq 1.$$

So $a_m^{1/m}\|f_i\|_{p_m}/\|f_i\| \leq A/C(p_m)$. Note that as $p \to \infty$, $C(p) \to \infty$; so if β does not exist, we can find p_m' large enough such that

$$a_m^{1/m}\|f_i\|_{p_m}/\|f_i\| < \frac{1}{2} \quad \text{for } p_m \in [p_m', \infty) \text{ and } l \in (0, \infty).$$

Similarly, we may assume $\exists m''$ such that $p_m'' > p_m'$ and

$$0 < a_m^{1/m''}\|f_i\|_{p_m''}/\|f_i\| < \frac{1}{2} \quad \text{for } l \in (0, \infty).$$

Choose l_1 small enough such that $C l_1^{n}/n < 1$ and

$$M(C l_1^{n}/n)^{1/p_m'} < a_m^{1/m''}(C l_1^{n}/n)^{1/p_m''},$$

then for any $p_m < p_m'$,

$$a_m^{1/m}(C l_1^{n}/n)^{1/p_m} \leq M(C l_1^{n}/n)^{1/p_m'} < a_m^{1/m''}(C l_1^{n}/n)^{1/p_m''}.$$

So, from (13), we have

$$a_m^{1/m}\|f_i\|_{p_m}/\|f_i\| \leq a_m^{1/m''}\|f_i\|_{p_m''}/\|f_i\| < \frac{1}{2} \quad \text{for } p_m < p_m'.$$

Equations (12) and (14) give

$$\sum_{m=1}^{\infty} a_m\|f_i\|_{p_m}/\|f_i\|^m < 1,$$

which is again a contradiction to the definition of the β norm, and the theorem has been proved.

\section*{References}

\textsc{Department of Mathematics, State University of New York, Buffalo, New York 14214-3093}