Strong preinjective partitions and representation type of Artinian rings
HTML articles powered by AMS MathViewer
- by Birge Zimmermann-Huisgen
- Proc. Amer. Math. Soc. 109 (1990), 309-322
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007520-3
- PDF | Request permission
Abstract:
It is shown that for every ring of left pure global dimension zero (i.e., for every ring all of whose left modules are direct sums of finitely generated modules), the finitely generated left modules can be grouped to a unique "strong preinjective partition" while the finitely presented right modules possess a "strong preprojective partition"; these strong partitions are upgraded versions of the partitions introduced by Auslander and Smaløfor Artin algebras. One direct consequence is that a ring of left pure global dimension zero has finite representation type if and only if there exist sufficiently many almost split maps among its finitely generated left modules. This provides a very elementary proof for Auslander’s theorem saying that for Artin algebras vanishing of the left pure global dimension is equivalent to finiteness of the representation type.References
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- Maurice Auslander, Large modules over Artin algebras, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 1–17. MR 0424874
- Maurice Auslander, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976) Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York, 1978, pp. 1–244. MR 0480688
- Maurice Auslander and Mark Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR 0269685
- Maurice Auslander and Idun Reiten, Representation theory of Artin algebras. III. Almost split sequences, Comm. Algebra 3 (1975), 239–294. MR 379599, DOI 10.1080/00927877508822046
- M. Auslander and Sverre O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. MR 591246, DOI 10.1016/0021-8693(80)90113-1
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549
- Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. MR 120260, DOI 10.1090/S0002-9947-1960-0120260-3
- Kent R. Fuller, On rings whose left modules are direct sums of finitely generated modules, Proc. Amer. Math. Soc. 54 (1976), 39–44. MR 393133, DOI 10.1090/S0002-9939-1976-0393133-6
- Laurent Gruson and Christian U. Jensen, Modules algébriquement compacts et foncteurs $\underleftarrow {\mmlToken {mi}{lim}}^{(i)}$, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1651–A1653. MR 320112
- Harlan L. Hullinger, Stable equivalence and rings whose modules are a direct sum of finitely generated modules, J. Pure Appl. Algebra 16 (1980), no. 3, 265–273. MR 558491, DOI 10.1016/0022-4049(80)90032-8
- Irving Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372–377. MR 0100017, DOI 10.2307/1970252
- Helmut Lenzing, Endlich präsentierbare Moduln, Arch. Math. (Basel) 20 (1969), 262–266 (German). MR 244322, DOI 10.1007/BF01899297
- Claus Michael Ringel and Hiroyuki Tachikawa, $\textrm {QF}-3$ rings, J. Reine Angew. Math. 272 (1974), 49–72. MR 379578
- Daniel Simson, Pure semisimple categories and rings of finite representation type, J. Algebra 48 (1977), no. 2, 290–296. MR 460386, DOI 10.1016/0021-8693(77)90307-6
- Hiroyuki Tachikawa, Quasi-Frobenius rings and generalizations. $\textrm {QF}-3$ and $\textrm {QF}-1$ rings, Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin-New York, 1973. Notes by Claus Michael Ringel. MR 0349740
- Wolfgang Zimmermann, Rein injektive direkte Summen von Moduln, Comm. Algebra 5 (1977), no. 10, 1083–1117 (German). MR 450327, DOI 10.1080/00927877708822211
- Wolfgang Zimmermann, Existenz von Auslander-Reiten-Folgen, Arch. Math. (Basel) 40 (1983), no. 1, 40–49 (German). MR 720892, DOI 10.1007/BF01192750
- Birge Zimmermann-Huisgen, Rings whose right modules are direct sums of indecomposable modules, Proc. Amer. Math. Soc. 77 (1979), no. 2, 191–197. MR 542083, DOI 10.1090/S0002-9939-1979-0542083-3
- Birge Zimmermann-Huisgen and Wolfgang Zimmermann, Algebraically compact ring and modules, Math. Z. 161 (1978), no. 1, 81–93. MR 498722, DOI 10.1007/BF01175615
- Birge Zimmermann-Huisgen and Wolfgang Zimmermann, On the sparsity of representations of rings of pure global dimension zero, Trans. Amer. Math. Soc. 320 (1990), no. 2, 695–711. MR 965304, DOI 10.1090/S0002-9947-1990-0965304-0
- Mike Prest, Duality and pure-semisimple rings, J. London Math. Soc. (2) 38 (1988), no. 3, 403–409. MR 972125, DOI 10.1112/jlms/s2-38.3.403
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 309-322
- MSC: Primary 16A64
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007520-3
- MathSciNet review: 1007520