Mosco convergence and reflexivity
HTML articles powered by AMS MathViewer
- by Gerald Beer and Jonathan M. Borwein
- Proc. Amer. Math. Soc. 109 (1990), 427-436
- DOI: https://doi.org/10.1090/S0002-9939-1990-1012924-9
- PDF | Request permission
Abstract:
In this note we aim to show conclusively that Mosco convergence of convex sets and functions and the associated Mosco topology ${\tau _M}$ are useful notions only in the reflexive setting. Specifically, we prove that each of the following conditions is necessary and sufficient for a Banach space $X$ to be reflexive: (1) whenever $A,{A_1},{A_2},{A_3}, \ldots$ are nonempty closed convex subsets of $X$ with $A = {\tau _M} - \lim {A_n}$, then ${A^ \circ } = {\tau _M} - \lim A_n^ \circ$; (2) ${\tau _M}$ is a Hausdorff topology on the nonempty closed convex subsets of $X$; (3) the arg min multifunction $f \rightrightarrows \{ x \in X:f(x) = \inf {}_Xf\}$ on the proper lower semicontinuous convex functions on $X$, equipped with ${\tau _M}$, has closed graph.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850 H. Attouch, R. Lucchetti, and R. Wets, The topology of the $\rho$-Hausdorff distance, Annali Mat. Pura Appl. (to appear).
- M. Baronti and P. L. Papini, Convergence of sequences of sets, Methods of functional analysis in approximation theory (Bombay, 1985) Internat. Schriftenreihe Numer. Math., vol. 76, Birkhäuser, Basel, 1986, pp. 135–155. MR 904685
- Gerald Beer, On Mosco convergence of convex sets, Bull. Austral. Math. Soc. 38 (1988), no. 2, 239–253. MR 969914, DOI 10.1017/S0004972700027519
- Gerald Beer, On the Young-Fenchel transform for convex functions, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1115–1123. MR 937844, DOI 10.1090/S0002-9939-1988-0937844-8
- Gerald Beer, Support and distance functionals for convex sets, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 15–36. MR 978800, DOI 10.1080/01630568908816288
- Gerald Beer, Conjugate convex functions and the epi-distance topology, Proc. Amer. Math. Soc. 108 (1990), no. 1, 117–126. MR 982400, DOI 10.1090/S0002-9939-1990-0982400-8
- Jonathan M. Borwein and Simon Fitzpatrick, Mosco convergence and the Kadec property, Proc. Amer. Math. Soc. 106 (1989), no. 3, 843–851. MR 969313, DOI 10.1090/S0002-9939-1989-0969313-4
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Richard B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, Vol. 257, Springer-Verlag, Berlin-New York, 1972. MR 0420367
- Robert C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289–300 (1973). MR 338742, DOI 10.1007/BF02762803
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- Roberto Lucchetti and Fioravante Patrone, Hadamard and Tyhonov well-posedness of a certain class of convex functions, J. Math. Anal. Appl. 88 (1982), no. 1, 204–215. MR 661413, DOI 10.1016/0022-247X(82)90187-1
- L. McLinden, Successive approximation and linear stability involving convergent sequences of optimization problems, J. Approx. Theory 35 (1982), no. 4, 311–354. MR 665986, DOI 10.1016/0021-9045(82)90022-3
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI 10.1016/0022-247X(71)90200-9
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI 10.1016/0022-247X(77)90060-9 Y. Sonntag, Convergence au sens de Mosco, théorie et applications à l’approximation des solutions d’inéquations, Thèse d’Etat, Université de Provence, Marseille, 1982.
- Makoto Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), no. 4, 301–309. MR 740641, DOI 10.1016/0021-9045(84)90003-0
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 427-436
- MSC: Primary 46B10; Secondary 46B20, 49J45, 54B20, 90C25
- DOI: https://doi.org/10.1090/S0002-9939-1990-1012924-9
- MathSciNet review: 1012924