Divisibility of generalized exponential and logarithmic coefficients
HTML articles powered by AMS MathViewer
- by Donald M. Davis
- Proc. Amer. Math. Soc. 109 (1990), 553-558
- DOI: https://doi.org/10.1090/S0002-9939-1990-1013968-3
- PDF | Request permission
Abstract:
We prove that for isomorphic formal group laws, the maximal $p$-power in the denominators of certain collections of coefficients of powers of their exponential series are equal. These numbers are significant in algebraic topology.References
- M. F. Atiyah and J. A. Todd, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342β353. MR 132552, DOI 10.1017/s0305004100034642
- J. F. Adams and G. Walker, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81β103. MR 171285
- Andrew Baker, Combinatorial and arithmetic identities based on formal group laws, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp.Β 17β34. MR 928821, DOI 10.1007/BFb0082998
- Martin Bendersky, Some calculations in the unstable Adams-Novikov spectral sequence, Publ. Res. Inst. Math. Sci. 16 (1980), no.Β 3, 739β766. MR 602467, DOI 10.2977/prims/1195186928
- Francis Clarke, The universal von Staudt theorems, Trans. Amer. Math. Soc. 315 (1989), no.Β 2, 591β603. MR 986687, DOI 10.1090/S0002-9947-1989-0986687-3
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128
- M. C. Crabb and K. Knapp, James numbers, Math. Ann. 282 (1988), no.Β 3, 395β422. MR 967021, DOI 10.1007/BF01460042
- M. C. Crabb and K. Knapp, The Hurewicz map on stunted complex projective spaces, Amer. J. Math. 110 (1988), no.Β 5, 783β809. MR 961495, DOI 10.2307/2374693
- Donald M. Davis and Mark Mahowald, $v_1$-periodic homotopy of $\textrm {Sp}(2), \textrm {Sp}(3),$ and $S^{2n}$, Homotopy theory and related topics (Kinosaki, 1988) Lecture Notes in Math., vol. 1418, Springer, Berlin, 1990, pp.Β 219β237. MR 1048189, DOI 10.1007/BFb0083706
- I. Dibag, An analogue of the von Staudt-Clausen theorem, J. Algebra 87 (1984), no.Β 2, 332β341. MR 739937, DOI 10.1016/0021-8693(84)90140-6 H. Hasse, Die Gruppe der ${p^n}$-primΓ€ren Zahlen fΓΌr ein Primteiler von $p$, J. Reine Angew. Math. 176 (1936), 174-183.
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
- Albert T. Lundell, Generalized $E$-invariants and the numbers of James, Quart. J. Math. Oxford Ser. (2) 25 (1974), 427β440. MR 375312, DOI 10.1093/qmath/25.1.427
- Haynes Miller, Universal Bernoulli numbers and the $S^{1}$-transfer, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp.Β 437β449. MR 686158
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 553-558
- MSC: Primary 55N22; Secondary 14L05
- DOI: https://doi.org/10.1090/S0002-9939-1990-1013968-3
- MathSciNet review: 1013968