On the Mal′cev correspondence
HTML articles powered by AMS MathViewer
- by Carlos R. Videla
- Proc. Amer. Math. Soc. 109 (1990), 493-502
- DOI: https://doi.org/10.1090/S0002-9939-1990-1014647-9
- PDF | Request permission
Abstract:
We generalize Mal’cev’s correspondence [5] to other nilpotent groups, namely to certain maximal unipotent subgroups of Chevalley groups. If $\mathcal {L}$ is a root system and $K$ is an infinite field of characteristic different to 2 or 3, then we show that a group $G$ elementarily equivalent to ${U_\mathcal {L}}(K)$ is isomorphic to ${U_\mathcal {L}}(F)$, where $F$ is a field elementarily equivalent to $K$.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1364, Hermann, Paris, 1975 (French). MR 0453824
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- John A. Gibbs, Automorphisms of certain unipotent groups, J. Algebra 14 (1970), 203–228. MR 266985, DOI 10.1016/0021-8693(70)90123-7
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Anatoliĭ Ivanovič Mal′cev, The metamathematics of algebraic systems. Collected papers: 1936–1967, Studies in Logic and the Foundations of Mathematics, Vol. 66, North-Holland Publishing Co., Amsterdam-London, 1971. Translated, edited, and provided with supplementary notes by Benjamin Franklin Wells, III. MR 0349383
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 493-502
- MSC: Primary 20G15; Secondary 03C65, 20F18
- DOI: https://doi.org/10.1090/S0002-9939-1990-1014647-9
- MathSciNet review: 1014647