A remark on strong maximum principle for parabolic and elliptic systems
HTML articles powered by AMS MathViewer
- by Xuefeng Wang
- Proc. Amer. Math. Soc. 109 (1990), 343-348
- DOI: https://doi.org/10.1090/S0002-9939-1990-1019284-8
- PDF | Request permission
Abstract:
We give a strong maximum principle for some nonlinear parabolic and elliptic systems with convex invariant regions. We also obtain a version of the Hopf boundary lemma for the systems.References
- Hans F. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. Mat. (6) 8 (1975), 295–310 (English, with Italian summary). MR 397126
- K. N. Chueh, C. C. Conley, and J. A. Smoller, Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J. 26 (1977), no. 2, 373–392. MR 430536, DOI 10.1512/iumj.1977.26.26029
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- William C. Troy, Symmetry properties in systems of semilinear elliptic equations, J. Differential Equations 42 (1981), no. 3, 400–413. MR 639230, DOI 10.1016/0022-0396(81)90113-3
- James Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304–318. MR 333220, DOI 10.1007/BF00250468
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 343-348
- MSC: Primary 35B50; Secondary 35J60, 35K55
- DOI: https://doi.org/10.1090/S0002-9939-1990-1019284-8
- MathSciNet review: 1019284