A brief proof of Jacobian hypothesis implies flatness
HTML articles powered by AMS MathViewer
- by Masayoshi Miyanishi, Lorenzo Robbiano and Stuart Sui Sheng Wang
- Proc. Amer. Math. Soc. 109 (1990), 327-330
- DOI: https://doi.org/10.1090/S0002-9939-1990-1021901-3
- PDF | Request permission
Abstract:
Let $S$ be a polynomial ring in $n$ variables over a field, and let $R$ be the subring generated by $n$ polynomials. We give a short proof of the fact that if the Jacobian determinant of these $n$ polynomials is 1, then $S$ is a flat $R$-module.References
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086 —, Éléments de géométrie algébrique IV, Étude Locale des Schémas et des Morphismes de Schémas (Quatrième Partie), Publ. Math., Inst. Hautes Études Sci. 32 (1967).
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Robert A. Morris and Stuart Sui Sheng Wang, A Jacobian criterion for smoothness, J. Algebra 69 (1981), no. 2, 483–486. MR 617091, DOI 10.1016/0021-8693(81)90217-9
- Stuart Sui Sheng Wang, A Jacobian criterion for separability, J. Algebra 65 (1980), no. 2, 453–494. MR 585736, DOI 10.1016/0021-8693(80)90233-1
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 327-330
- MSC: Primary 13F20; Secondary 13B10, 14E07
- DOI: https://doi.org/10.1090/S0002-9939-1990-1021901-3
- MathSciNet review: 1021901