The converse of the Minkowski’s inequality theorem and its generalization
HTML articles powered by AMS MathViewer
- by Janusz Matkowski
- Proc. Amer. Math. Soc. 109 (1990), 663-675
- DOI: https://doi.org/10.1090/S0002-9939-1990-1009994-0
- PDF | Request permission
Abstract:
Let ($\Omega$, $\Sigma$, $\mu$) be a measure space with two sets $A,B \in \Sigma$ such that $0 < \mu (A) < 1 < \mu (B) < \infty$ , and let $\varphi :{{\mathbf {R}}_ + } \to {{\mathbf {R}}_ + }$ be bijective and ${\varphi ^{ - 1}}$ continuous at 0. We prove that if for all $\mu$-integrable step functions $x,y:\Omega \to {\mathbf {R}}$, \[ {\varphi ^{ - 1}}\left ( {\int _\Omega {\varphi \circ |x + y|d\mu } } \right ) \leq {\varphi ^{ - 1}}\left ( {\int _\Omega {\varphi \circ |x|d\mu } } \right ) + {\varphi ^{ - 1}}\left ( {\int _\Omega {\varphi \circ |y|d\mu } } \right )\] then $\varphi (t) = \varphi (1){t^p}$ for some $p \geq 1$. In the case of normalized measure we prove a generalization of Minkowski’s inequality theorem. The suitable results for the reversed inequality are also presented.References
- J. Aczél, Lectures on functional equations and their applications, Mathematics in Science and Engineering, Vol. 19, Academic Press, New York-London, 1966. Translated by Scripta Technica, Inc. Supplemented by the author. Edited by Hansjorg Oser. MR 0208210
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR 788497
- Norbert Kuhn, A note on $t$-convex functions, General inequalities, 4 (Oberwolfach, 1983) Internat. Schriftenreihe Numer. Math., vol. 71, Birkhäuser, Basel, 1984, pp. 269–276. MR 821804 J. Matkowski and T. Swiatkowski, Quasi-monotontcity, subadditive bijections of ${{\mathbf {R}}_ + }$ and characterization of ${L^p}$-norm, J. Math. Anal, and Appl. (to appear).
- H. P. Mulholland, On generalizations of Minkowski’s inequality in the form of a triangle inequality, Proc. London Math. Soc. (2) 51 (1950), 294–307. MR 33865, DOI 10.1112/plms/s2-51.4.294
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 663-675
- MSC: Primary 39C05; Secondary 26D10, 26D15, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1990-1009994-0
- MathSciNet review: 1009994