Centralizers of immersions of the circle
HTML articles powered by AMS MathViewer
- by Carlos Arteaga
- Proc. Amer. Math. Soc. 109 (1990), 849-853
- DOI: https://doi.org/10.1090/S0002-9939-1990-1013962-2
- PDF | Request permission
Abstract:
We prove here that for every element $f$ of an open and dense subset of immersions of the circle ${S^1}$, either the centralizer $Z\left ( f \right )$ of $f$ is trivial (i.e. $f$ only commutes with its own powers) or $f$ is topologically conjugate to a map ${f_n}:{S^1} \to {S^1}$ given by ${f_n}\left ( z \right ) = {z^n}$ and, in this case, if $h$ is the conjugacy between $f$ and ${f_n}$ then $Z\left ( f \right )$ is a subgroup of $\left \{ {{h^{ - 1}} \circ \omega {f_m} \circ h;m \in {\mathbf {N}}{\text { and }}{\omega ^{n - 1}} = 1} \right \}$.References
- M. V. Jakobson, Smooth mappings of the circle into itself, Mat. Sb. (N.S.) 85 (127) (1971), 163–188 (Russian). MR 0290406
- Nancy Kopell, Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 165–184. MR 0270396
- Ricardo Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), no. 4, 495–524. MR 806250
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 849-853
- MSC: Primary 58F10; Secondary 20F38, 58D10
- DOI: https://doi.org/10.1090/S0002-9939-1990-1013962-2
- MathSciNet review: 1013962