HILBERT-SCHMIDT HANKEL OPERATORS ON THE BERGMAN SPACE

KEHE ZHU

Abstract. We show that there are no nonzero Hilbert-Schmidt Hankel operators on the Bergman space of the open unit ball in \mathbb{C}^n with antiholomorphic symbols when $n \geq 2$.

1. Introduction

Let B_n be the open unit ball in \mathbb{C}^n with (normalized) volume measure $dv(z)$. The Bergman space $L^2_a(B_n)$ of B_n is the closed subspace of $L^2(B_n, dv)$ consisting of holomorphic functions. The Bergman projection P is the orthogonal projection from $L^2(B_n, dv)$ onto $L^2_a(B_n)$. Given $f \in L^2(B_n, dv)$, the Hankel operator (possibly unbounded) $H_f: L^2_a(B_n) \to L^2_a(B_n)^\perp$ is defined via the Bergman projection P as follows:

$$H_f g = (I - P)(fg), \quad g \in L^2_a(B_n),$$

where I is the identity operator on $L^2(B_n, dv)$. H_f is densely defined. f is called the symbol of H_f. It is clear that if f is holomorphic, then $H_f = 0$. The study of Hankel operators on the Bergman space of the open unit disc D in the complex plane \mathbb{C} was initiated in [4], and further pursued in [3], [5], [10], [12]. Hankel operators on the Bergman space of bounded symmetric domains were studied in [6], [7]. It was shown in [7] that if f is holomorphic in B_n, then H_f is bounded if and only if f is in the Bloch space [11]; H_f is compact if and only if f is in the little Bloch space. It was shown in [3] that for $1 < p < +\infty$ and f holomorphic in D, H_f is in the Schatten ideal S_p if and only if f is in the Besov space B_p consisting of holomorphic functions g on D such that

$$\int_D (1 - |z|^2)^p |g'(z)|^p \frac{dA(z)}{(1 - |z|^2)^2} < +\infty,$$

Received by the editors May 13, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 47B10, 47B35; Secondary 30H05, 47B38.

Research supported in part by the National Science Foundation.
where dA is the (normalized) area measure on D. In particular, H_f is Hilbert-Schmidt if and only if f is in the Dirichlet space consisting of analytic functions g on D with
\[\int_D \left| g'(z) \right|^2 dA(z) < +\infty. \]

The main purpose of the paper is to prove the following results.

Theorem. When $n \geq 2$, there are no nonzero Hilbert-Schmidt Hankel operators on $L^2_a(B^n)$ with antiholomorphic symbols.

The idea of the proof is as follows. First we'll observe that the space X of holomorphic functions f in B_n such that H_f is Hilbert-Schmidt is an invariant Hilbert space. Then we show that every nontrivial invariant Banach space of holomorphic functions in B_n must contain all polynomials. Finally we show that for $n \geq 2$, the polynomial z_i is not in X, thus X consists of only the constant functions. This proof will actually give us a little more.

Theorem. If $n > 1$ and $p < 2n$, then there are no nonzero Hankel operators in S_p with antiholomorphic symbols in B_n.

2. **A Trace Estimate for Hankel Operators**

Recall that a linear operator A on a Hilbert space H is Hilbert-Schmidt if
\[\|A\|_2^2 = \sum_{k=1}^{\infty} \|A_e_k\|^2 = \sum_{k,m=1}^{\infty} |\langle A_e_k, e_m \rangle|^2 < +\infty \]
for any (or some) orthonormal basis $\{e_k\}$ of H. A positive operator A on H is in the trace class if
\[\text{tr}(A) = \sum_{k=1}^{\infty} \langle A_e_k, e_k \rangle < +\infty \]
for any (or some) orthonormal basis $\{e_k\}$ of H. $\text{tr}(A)$ is independent of the choice of the orthonormal basis $\{e_k\}$. Clearly, A is Hilbert-Schmidt if and only if A^*A is in the trace class. Moreover, $\|A\|_2^2 = \text{tr}(A^*A)$. In general, we say that a bounded linear operator A is in the Schatten ideal S_p if $(A^*A)^{p/2}$ is in the trace class. We let $\|A\|_p = [\text{tr}(A^*A)^{p/2}]^{1/p}$. For more information on Schatten ideals, see [8].

We say that a Hankel operator $H_f : L^2_a(B^n) \to L^2_a(B^n)^\perp$ is Hilbert-Schmidt if $H_f^*H_f : L^2_a(B_n) \to L^2_a(B_n)$ is in the trace class. We say that H_f is in S_p if $\text{tr}(H_f^*H_f)^{p/2} < +\infty$.

Let
\[K(z, w) = \frac{1}{(1 - \langle z, w \rangle)^{n+1}} \]
be the Bergman kernel of B_n. The Bergman projection P is given by
\[Pf(z) = \int_{B_n} K(z, w)f(w) \, dv(w), \quad f \in L^2(B_n, dv). \]
For $\lambda \in B_n$, let

$$k_\lambda(z) = \frac{K(z, \lambda)}{\sqrt{K(\lambda, \lambda)}}, \quad z \in B_n.$$

k_λ is a unit vector in $L^2_a(B_n)$. For any f in $L^1(B_n, dv)$, we define a function \tilde{f} on B_n as follows:

$$\tilde{f}(z) = \langle f k_z, k_z \rangle = \int_{B_n} f(w) |k_z(w)|^2 dv(w).$$

\tilde{f} is called the Berezin transform of f [6, 7, 12]. By a change of variable, we have

$$\tilde{f}(z) = \int_{B_n} f(\varphi_z(w)) dv(w),$$

where φ_z is the biholomorphic mapping from B_n onto B_n defined in 2.2 of [9]. The reproducing property of $K(z, w)$ easily implies that $\tilde{f} = f$ for f in $L^2_a(B_n)$.

Theorem 1. There exists a constant $C > 0$ such that

$$\int_{B_n} (|\tilde{f}(z)|^2 - |f(z)|^2) K(z, z) dv(z) \leq C \text{tr}(H_f^*H_f + H_{\tilde{f}}^*H_{\tilde{f}}),$$

$$\text{tr}(H_f^*H_f + H_{\tilde{f}}^*H_{\tilde{f}}) \leq C \int_{B_n} (|\tilde{f}(z)|^2 - |f(z)|^2) K(z, z) dv(z)$$

for all f in $L^2(B_n, dv)$. Moreover, if $f \in L^2_a(B_n)$, then

$$\text{tr}(H_f^*H_f) = \int_{B_n} (|\tilde{f}(z)|^2 - |f(z)|^2) K(z, z) dv(z).$$

Proof. By Lemma 13 of [13],

$$\text{tr}(H_f^*H_f) = \int_{B_n} (H_f^*H_f)(\cdot, z), K(\cdot, z)) dv(z)$$

$$= \int_{B_n} \|H_f k_z\|^2 K(z, z) dv(z)$$

$$= \int_{B_n} \|(I - P)(fk_z)\|^2 K(z, z) dv(z)$$

$$= \int_{B_n} (\|fk_z\|^2 - \|P(fk_z)\|^2) K(z, z) dv(z)$$

$$= \int_{B_n} (|\tilde{f}|^2(z) - \|P(fk_z)\|^2) K(z, z) dv(z).$$

By the Cauchy-Schwarz inequality, we have

$$|\tilde{f}(z)| = |\langle fk_z, k_z \rangle| = |\langle P(fk_z), k_z \rangle| \leq \|P(fk_z)\|.$$

Therefore,

$$\text{tr}(H_f^*H_f) \leq \int_{B_n} (|\tilde{f}|^2(z) - \|P(fk_z)\|^2) K(z, z) dv(z).$$
Replace f by \overline{f}; then
\[\text{tr}(H_f^*H_f) \leq \int_{B_n} (|\overline{f}(z)|^2 - |f(z)|^2)K(z, z)\,dv(z) \]
since $\overline{g} = \overline{g}$ for any g in $L^1(B_n, dv)$. Thus
\[\text{tr}(H_f^*H_f + H_j^*H_j) \leq 2\int_{B_n} (|\overline{f}(z)|^2 - |f(z)|^2)K(z, z)\,dv(z). \]

On the other hand, by Theorem 3 of [7],
\[|\overline{f}(z)|^2 - |f(z)|^2 \leq 2(1 + \sqrt{2})^2(\|H_fk_z\|^2 + \|H_jk_z\|^2), \]
thus
\[\int_{B_n} (|\overline{f}(z)|^2 - |f(z)|^2)K(z, z)\,dv(z) \leq 2(1 + \sqrt{2})^2 \int_{B_n} (\|H_fk_z\|^2 + \|H_jk_z\|^2)K(z, z)\,dv(z) \]
\[= 2(1 + \sqrt{2})^2 \text{tr}(H_f^*H_f + H_j^*H_j), \]
and the first part of Theorem 1 is proved.

If f is holomorphic, then $H_f = 0$ and $P(\overline{f}k_z)(w) = \overline{f}(z)k_z(w)$, so
\[\|P(\overline{f}k_z)\| = \|\overline{f}(z)k_z\| = |\overline{f}(z)| = |f(z)| = |\overline{f}(z)|. \]

It follows that
\[\text{tr}(H_f^*H_f) = \int_{B_n} (|\overline{f}(z)|^2 - \|P(\overline{f}k_z)\|^2)K(z, z)\,dv(z) \]
\[= \int_{B_n} (|\overline{f}(z)|^2 - |f(z)|^2)K(z, z)\,dv(z), \]
completing the proof of Theorem 1. □

Corollary 2. Given f in $L^2(B_n, dv)$, then H_f and H_j are both Hilbert-Schmidt if and only if
\[\int_{B_n} (|\overline{f}(z)|^2 - |f(z)|^2)K(z, z)\,dv(z) < +\infty. \]

3. **Invariant Banach spaces of holomorphic functions**

The following technical lemma will be needed in the proof of the main results. We isolate its proof in this section.

Lemma 3. Suppose X is a linear space of holomorphic functions in B_n with a complete seminorm $\|\|$. Assume that X satisfies the following conditions:

1. X contains a nonconstant function;
2. $f \circ \varphi \in X$ and $\|f \circ \varphi\| = \|f\|$ whenever $f \in X$ and $\varphi \in \text{Aut}(B_n)$, where $\text{Aut}(B_n)$ is the group of biholomorphic mappings of B_n;
3. $(\theta_1, \ldots, \theta_n) \mapsto f(z_1e^{i\theta_1}, \ldots, z_ne^{i\theta_n})$: $[0, 2\pi]^n \to X$ is continuous for each f in X.

Then X contains all polynomials.
Proof. Let \(f \) be a nonconstant function in \(X \). Write

\[
f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha},
\]

where \(\alpha = (\alpha_1, \ldots, \alpha_n) \) is an \(n \)-tuple of nonnegative integers and \(z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n} \). Since \(f \) is nonconstant, there exists \(\alpha_0 \neq 0 \) such that \(a_{\alpha_0} \neq 0 \).

Write \(\alpha_0 = (k_1, \ldots, k_n) \), then it is easy to see that

\[
a_{\alpha_0} z^{\alpha_0} = \frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} f(z_1 e^{i\theta_1}, \ldots, z_n e^{i\theta_n}) e^{-ik_1 \theta_1} \cdots e^{-ik_n \theta_n} d\theta_1 \cdots d\theta_n.
\]

By conditions 3 and 2, \(a_{\alpha_0} z^{\alpha_0} \in X \). Since \(a_{\alpha_0} \neq 0 \), we have \(z^{\alpha_0} \in X \).

Let \(k = k_1 + \cdots + k_n > 0 \). We show that \(z_1^k \in X \). Let \(U = (u_{ij})_{n \times n} \) be a unitary matrix each of whose entries in the first column is \(\frac{1}{\sqrt{n}} \), then

\[
z^{\alpha_0} U(z) = (u_{11} z_1 + \cdots + u_{1n} z_n)^{k_1} \cdots (u_{n1} z_1 + \cdots + u_{nn} z_n)^{k_n} = \left(\frac{1}{\sqrt{n}} \right)^k z_1^k + R(z),
\]

where \(R(z) \) is a homogeneous polynomial of degree \(k \) each of whose nonzero terms contains at least one positive power of \(z_2, \ldots, z_n \). It follows that

\[
\int_0^{2\pi} \cdots \int_0^{2\pi} R(z_1, z_2 e^{i\theta_2}, \ldots, z_n e^{i\theta_n}) d\theta_2 \cdots d\theta_n = 0.
\]

Therefore,

\[
\frac{1}{(2\pi)^{n-1}} \int_0^{2\pi} \cdots \int_0^{2\pi} z^{\alpha_0} U(z_1, z_2 e^{i\theta_2}, \ldots, z_n e^{i\theta_n}) d\theta_2 \cdots d\theta_n = \left(\frac{1}{\sqrt{n}} \right)^k z_1^k
\]

is in \(X \).

Recall that for each \(\lambda \in B_n \), \(\varphi_\lambda \) is the biholomorphic mapping on \(B_n \) defined in 2.2 of \([9]\). If \(\lambda = (r, 0, \ldots, 0) \) for \(r \in (-1, 1) \), we write \(\varphi_\lambda = \varphi_r \). It is easy to see (from the definition of \(\varphi_\lambda \)) that

\[
\varphi_r(z_1, \ldots, z_n) = \left(\frac{r - z_1}{1 - rz_1}, -\sqrt{1 - r^2} z_2, \ldots, -\sqrt{1 - r^2} z_n \right).
\]

By 1, \(z_1^k \circ \varphi_r \in X \) for all \(r \in (-1, 1) \), thus

\[
\left(\frac{r - z_1}{1 - rz_1} \right)^k = r^k - kr^{k-1}(1 - r^2)z_1 + \cdots
\]

is in \(X \). But

\[
\frac{1}{2\pi} \int_0^{2\pi} \left(\frac{r - z_1 e^{i\theta_1}}{1 - rz_1 e^{i\theta_1}} \right)^k e^{-i\theta_1} d\theta_1 = -kr^{k-1}(1 - r^2)z_1,
\]

so \(z_1 \in X \).

Since

\[
z_1 \circ \varphi_r(z) = \frac{r - z_1}{1 - rz_1} = r - \sum_{j=1}^{\infty} r^{j-1}(1 - r^2)z_1^j,
\]
the integral
\[\frac{1}{2\pi} \int_0^{2\pi} z_1 \circ \varphi_r(z_1 e^{i\theta_1}, z_2, \ldots, z_n) e^{-im\theta_1} \, d\theta_1 \]
gives \(z_1^m \in X\) for all \(m \geq 0\).

Finally, let \(V = (v_{ij})_{n \times n}\) be a unitary matrix each of whose entries in the first row is \(\frac{1}{\sqrt{n}}\), then
\[z_1^m \circ V(z) = \left(\frac{1}{\sqrt{n}} z_1 + \cdots + \frac{1}{\sqrt{n}} z_n \right)^m \]
\[= \left(\frac{1}{\sqrt{n}} \right)^m \sum_{|\alpha| = m} \frac{m!}{\alpha!} z^\alpha, \]
where \(\alpha! = \alpha_1! \cdots \alpha_n!\). For any \(|\alpha| = m\), the integral
\[\frac{1}{(2\pi)^n} \int_0^{2\pi} \cdots \int_0^{2\pi} z_1^m \circ V(z_1 e^{i\theta_1}, \ldots, z_n e^{i\theta_n}) e^{-i\alpha_1 \theta_1} \cdots e^{-i\alpha_n \theta_n} \, d\theta_1 \cdots d\theta_n \]
gives \(z^\alpha \in X\). Since \(m\) is arbitrary, we have completed the proof of Lemma 3. □

Remark. The proof of Lemma 3 generalizes the proof of Proposition 2 in [2]. The general theory of invariant Banach spaces of holomorphic functions in \(D\) was developed in [2], [1].

4. PROOF OF THE MAIN RESULTS

We now prove

Theorem 4. If \(n \geq 2\), then there are no nonzero Hilbert-Schmidt Hankel operators on \(L^2_a(B_n)\) with antiholomorphic symbols in \(B_n\).

Proof. For any \(f\) in \(L^2_a(B_n)\), we have
\[f(z) - f(0) = \int_{B_n} \frac{f(w) - f(0)}{(1 - \langle z, w \rangle)^{n+1}} \, dv(w). \]
Differentiating under the integral sign, we have
\[\frac{\partial f}{\partial z_i}(0) = (n + 1) \int_{B_n} \overline{w}_i (f(w) - f(0)) \, dv(w), \quad 1 \leq i \leq n. \]
It follows that
\[\sum_{i=1}^n \left| \frac{\partial f}{\partial z_i}(0) \right|^2 \leq (n + 1)^2 \int_{B_n} |w|^2 |f(w) - f(0)|^2 \, dv(w) \]
\[\leq (n + 1)^2 \int_{B_n} |f(w) - f(0)|^2 \, dv(w). \]
It is easy to see that
\[\int_{B_n} |f(w) - f(0)|^2 \, dv(w) = |\tilde{f}(0) - |\tilde{f}(0)|^2 |
and
\[\Delta(|f|^2)(0) = 4 \sum_{i=1}^{n} \left| \frac{\partial f}{\partial z_i}(0) \right|^2, \]
where \(\Delta \) is the (usual) Laplacian on \(B_n \). Therefore,
\[\Delta(|f|^2)(0) \leq 4(n + 1)^2 (|\hat{f}|^2(0) - |\hat{f}(0)|^2). \]
Replacing \(f \) by \(f \circ \varphi_z \), then
\[\tilde{\Delta}(|f|^2)(z) \leq 4(n + 1)^2 (|\hat{f}|^2(z) - |\hat{f}(z)|^2) \]
for all \(f \in L^2_a(B_n) \), where \(\tilde{\Delta} \) is the invariant Laplacian of \(B_n \) [9]. By Theorem 1, we have
\[\int_{B_n} \tilde{\Delta}(|f|^2)(z)K(z, z) dv(z) \leq 4(n + 1)^2 \text{tr}(H_f^*H_f). \]
Now let \(X \) be the space of holomorphic functions \(f \) on \(B_n \) with
\[\|f\|_X = \left[\int_{B_n} \tilde{\Delta}(|f|^2)(z)K(z, z) dv(z) \right]^{1/2} < +\infty, \]
then \(\| \cdot \|_X \) is an invariant complete seminorm on \(X \), and \(X \) contains \(f \) if \(H_f \) is Hilbert-Schmidt. Thus Theorem 4 will be proved (by Lemma 3) if we can show that condition 3 of Lemma 3 is satisfied and \(z \in X \).

We first check that \(z \in X \) if \(n \geq 2 \). By [9],
\[
\int_{B_n} \tilde{\Delta}(|z|^2)(z)K(z, z) dv(z)
\]
\[= 4 \int_{B_n} \frac{(1 - |z|^2)(1 - |z_1|^2)}{(1 - |z|^2)^{n+1}} dv(z)
\]
\[= 4 \int_{B_n} \frac{1 - |z_1|^2}{(1 - |z|^2)^n} dv(z)
\]
\[\geq 4 \int_{B_n} \frac{dv(z)}{(1 - |z|^2)^{n-1}} = +\infty \]
if \(n \geq 2 \).

It remains to check that \(X \) satisfies condition 3 of Lemma 3. For any \(\theta = (\theta_1, \ldots, \theta_n) \in [0, 2\pi]^n \), let \(U_\theta \) be the operator defined by
\[U_\theta f(z) = f(z_1 e^{i\theta_1}, \ldots, z_n e^{i\theta_n}); \]
then we have to show that
\[\|U_\theta f - f\|_X = \left[\int_{B_n} \tilde{\Delta}(|U_\theta f - f|^2)(z)K(z, z) dv(z) \right]^{1/2} \to 0 \quad (\theta \to 0) \]
for any fixed \(f \) in \(X \). Write \(B_n = \{ z : |z| < r \} \cup \{ z : r \leq |z| < 1 \} \) and apply the triangle inequality, then

\[
\| U_\theta f - f \|_X \leq \left[\int_{|z|<r} \tilde{\Delta}(\|U_\theta f - f\|^2)(z)K(z, z) \, dv(z) \right]^{1/2} + \left[\int_{r\leq|z|<1} \tilde{\Delta}(\|U_\theta f - f\|^2)(z)K(z, z) \, dv(z) \right]^{1/2}.
\]

The first term above tends to 0 (for any \(r \in (0, 1) \)) as \(\theta \to 0 \) (by uniform convergence). The second term above can be made arbitrarily small by choosing \(r \) close enough to 1 because

\[
\int_{B_n} \tilde{\Delta}(\|f\|^2)(z)K(z, z) \, dv(z) < +\infty,
\]

and

\[
[\tilde{\Delta}(\|U_\theta f - f\|^2)(z)]^{1/2} \leq [\tilde{\Delta}(\|U_\theta f\|^2)(z)]^{1/2} + [\tilde{\Delta}(\|f\|^2)(z)]^{1/2},
\]

and the measure \(K(z, z) \, dv(z) \) is rotation invariant. This completes the proof of Theorem 4. \(\square \)

For any \(1 \leq p < +\infty \), Lemma 13 of [13] gives

\[
\|H_f\|^p_p = \text{tr}((H_f^*H_f)^{p/2}) = \int_{B_n} \langle (H_f^*H_f)^{p/2} k_z, k_z \rangle K(z, z) \, dv(z).
\]

If \(p \geq 2 \), then by Proposition 6.4 of [3],

\[
\|H_f\|^p_p \geq \int_{B_n} \langle H_f^*H_f k_z, k_z \rangle^{p/2} K(z, z) \, dv(z).
\]

If \(f \) is further antiholomorphic, then

\[
\langle H_f^2 H_f k_z, k_z \rangle = \|H_f k_z\|^2 = |f(z)|^2 - |\bar{f}(z)|^2,
\]

and

\[
\|H_f\|^p_p \geq \int_{B_n} \langle |f(z)|^2 - |\bar{f}(z)|^2 \rangle^{p/2} K(z, z) \, dv(z)
\]

\[
\geq \left[\frac{1}{2(n+1)} \right]^p \int_{B_n} \tilde{\Delta}(\|f\|^2)(z) K(z, z) \, dv(z).
\]

Let \(X_p \) be the space of holomorphic functions \(f \) on \(B_n \) such that

\[
\|f\|^p_p = \int_{B_n} [\tilde{\Delta}(\|f\|^2)(z)]^{p/2} K(z, z) \, dv(z) < +\infty.
\]
Then X_p contains all functions f such that $H_f \in S_p$, and X_p satisfies conditions 2 and 3 of Lemma 3 (see the proof of Theorem 4). Since

$$
\int_{B_n} [\Delta(|z_1|^2)(z)]^{p/2} K(z, z) dv(z)
= \int_{B_n} [4(1 - |z|^2)(1 - |z_1|^2)]^{p/2} K(z, z) dv(z)
= 2^p \int_{B_n} \frac{(1 - |z_1|^2)^{p/2}}{(1 - |z|^2)^{n+1-p/2}} dv(z) = +\infty
$$

if $n > 1$ and $2 \leq p \leq 2n$. It follows from Lemma 3 that X_p contains only the constant functions when $n \geq 2$ and $2 \leq p \leq 2n$. Since $S_p \subset S_q$ for $0 < q < +\infty$, we have proved the following.

Theorem 5. If $n > 1$ and $0 < p \leq 2n$, then there are no nonzero Hankel operators in S_p with antiholomorphic symbols in B_n.

5. Remarks

The analysis in the previous sections easily implies the following: If $2 \leq p < +\infty$ and $H_f, H_{\bar{f}}$ are in S_p, then $[|\hat{f}(z)|^2 - |\hat{f}(z)|^2]^{1/2}$ is in $L^p(B_n, K(z, z) dv(z))$.

Moreover, the converse is true for $p = 2$. This leads to the following.

Conjecture 1. If $1 \leq p < +\infty$, then H_f and $H_{\bar{f}}$ are in S_p if and only if $[|\hat{f}(z)|^2 - |\hat{f}(z)|^2]^{1/2}$ is in $L^p(B_n, K(z, z) dv(z))$.

The corresponding results for Toeplitz operators on the Bergman spaces of bounded symmetric domains were established in [13].

Let Z_p be the space of holomorphic functions f in B_n such that

$$
\|f\|_p^p = \int_{B_n} [|\hat{f}(z)|^2(z) - |\hat{f}(z)|^2(z)]^{p/2} K(z, z) dv(z) < +\infty.
$$

We know that Z_p consists of only the constant functions if $n > 1$ and $1 \leq p \leq 2n$. On the other hand, when p is large enough, it is easy to see that $z_1 \in Z_p$. Since Z_p is an invariant Banach space, Lemma 3 implies that Z_p contains all polynomials if p is large. This suggests

Conjecture 2. Z_p is nontrivial iff $p > 2n$. When Z_p is nontrivial, we have $f \in Z_p$ iff H_f is in S_p iff

$$
\int_{B_n} [\Delta(|f|^2)(z)]^{p/2} K(z, z) dv(z) < +\infty.
$$

We have seen that the theory of Schatten ideal Hankel operators with antiholomorphic symbols is closely related to the theory of invariant Banach spaces...
of holomorphic functions. This theory was discussed in [2] and [1] for the open unit disk D. In higher dimensions, the author has recently obtained the following result [14]: There exists a unique Hilbert space of holomorphic functions f in B_n whose (semi)-inner product is invariant under the group $\text{Aut}(B_n)$ of biholomorphic mappings. When $n = 1$, this space is the Dirichlet space consisting of exactly the analytic functions f in D such that H_f is Hilbert-Schmidt. Here exists an interesting difference between dimension 1 and higher dimensions, because when $n \geq 2$, H_f is never Hilbert-Schmidt unless f is constant.

ACKNOWLEDGMENT

The author wishes to thank the referee for several useful suggestions and pointing out an error in the original manuscript.

REFERENCES