Periodic solutions for nonlinear evolution equations in a Banach space
HTML articles powered by AMS MathViewer
- by Ioan I. Vrabie
- Proc. Amer. Math. Soc. 109 (1990), 653-661
- DOI: https://doi.org/10.1090/S0002-9939-1990-1015686-4
- PDF | Request permission
Abstract:
We prove an existence result for $T$-periodic mild solutions to nonlinear evolution equations of the form \[ u’(t) + Au(t) \backepsilon F(t,u(t)),\quad t \in {R_ + }.\] Here $(X,|| \cdot ||)$ is a real Banach space, $A:D(A) \subset X \to {2^X}$ is an operator with $A - aI$ $m$-accretive for some $a > 0$ and such that $- A$. generates a compact semigroup, while $F:{R_ + } \times \overline {D(A)} \to X$ is a Carathéodory mapping which is $T$-periodic with respect to its first argument and satisfies \[ \lim \limits _{r \to + \infty } \tfrac {1}{r}\sup \left \{ {||F(t,v)||;t \in {R_ + },v \in \overline {D(A)} ,||v|| \leq r} \right \} < a.\]. As a consequence, we obtain an existence theorem for $T$-periodic solutions to the porous medium equation.References
- Pierre Baras, Compacité de l’opérateur $f\mapsto u$ solution d’une équation non linéaire $(du/dt)+Au\ni f$, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 23, A1113–A1116 (French, with English summary). MR 493554
- Viorel Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976. Translated from the Romanian. MR 0390843
- Ronald I. Becker, Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl. 82 (1981), no. 1, 33–48. MR 626739, DOI 10.1016/0022-247X(81)90223-7
- Tomas Dominguez Benavides, Generic existence of periodic solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 33 (1985), no. 3-4, 129–135 (English, with Russian summary). MR 805026 H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans un espace de Hilbert, North-Holland, 1973.
- Felix E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100–1103. MR 177295, DOI 10.1073/pnas.53.5.1100
- Michael G. Crandall, Nonlinear semigroups and evolution governed by accretive operators, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 305–337. MR 843569, DOI 10.1090/pspum/045.1/843569
- Klaus Deimling, Periodic solutions of differential equations in Banach spaces, Manuscripta Math. 24 (1978), no. 1, 31–44. MR 499551, DOI 10.1007/BF01168561
- James H. Lightbourne III, Periodic solutions for a differential equation in Banach space, Trans. Amer. Math. Soc. 238 (1978), 285–299. MR 481337, DOI 10.1090/S0002-9947-1978-0481337-X
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 0259693
- Nicolae H. Pavel, Nonlinear evolution operators and semigroups, Lecture Notes in Mathematics, vol. 1260, Springer-Verlag, Berlin, 1987. Applications to partial differential equations. MR 900380, DOI 10.1007/BFb0077768 J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. T.M.A. 3 (1979), 601-612.
- Ioan I. Vrabie, The nonlinear version of Pazy’s local existence theorem, Israel J. Math. 32 (1979), no. 2-3, 221–235. MR 531265, DOI 10.1007/BF02764918
- Ioan I. Vrabie, Compactness methods and flow-invariance for perturbed nonlinear semigroups, An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.) 27 (1981), no. 1, 117–125. MR 618716
- I. I. Vrabie, Compactness methods for nonlinear evolutions, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987. With a foreword by A. Pazy. MR 932730 —, Periodic solutions of nonlinear evolution equations in a Hilbert space, in preparation.
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 109 (1990), 653-661
- MSC: Primary 34G20; Secondary 34C25, 47H15, 58D25
- DOI: https://doi.org/10.1090/S0002-9939-1990-1015686-4
- MathSciNet review: 1015686