On the generic existence of special ultrafilters
HTML articles powered by AMS MathViewer
- by R. Michael Canjar
- Proc. Amer. Math. Soc. 110 (1990), 233-241
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993747-3
- PDF | Request permission
Abstract:
We introduce the concept of the generic existence of $P$-point, $Q$-point, and selective ultrafilters, a concept which is somewhat stronger than the existence of these sorts of ultrafilters. We show that selective ultrafilters exist generically iff semiselectives do iff ${m_c} = c$, and we show that $Q$-point ultrafilters exist generically iff semi-$Q$-points do iff ${m_c} = d$, where $d$ is the minimal cardinality of a dominating family of functions and ${m_c}$ is the minimal cardinality of a cover of the real line by nowhere-dense sets. These results complement a result of Ketonen, that $P$-points exist generically iff $c = d$, and one of P. Nyikos and D. H. Fremlin, that saturated ultrafilters exist generically iff ${m_c} = c = {2^{ < c}}$.References
- Tomek Bartoszyński, Combinatorial aspects of measure and category, Fund. Math. 127 (1987), no. 3, 225–239. MR 917147, DOI 10.4064/fm-127-3-225-239
- James E. Baumgartner and Richard Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), no. 3, 271–288. MR 556894, DOI 10.1016/0003-4843(79)90010-X J. Baumgartner, private letter to the author, 11 November 1988.
- Murray G. Bell, On the combinatorial principle $P({\mathfrak {c}})$, Fund. Math. 114 (1981), no. 2, 149–157. MR 643555, DOI 10.4064/fm-114-2-149-157
- Murray Bell and Kenneth Kunen, On the PI character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), no. 6, 351–356. MR 642449
- Andreas Blass and Saharon Shelah, There may be simple $P_{\aleph _1}$- and $P_{\aleph _2}$-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243. MR 879489, DOI 10.1016/0168-0072(87)90082-0
- David Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/71), no. 1, 1–24. MR 277371, DOI 10.1016/0003-4843(70)90005-7
- Michael Canjar, Countable ultraproducts without CH, Ann. Pure Appl. Logic 37 (1988), no. 1, 1–79. MR 924678, DOI 10.1016/0168-0072(88)90048-6
- R. Michael Canjar, Small filter forcing, J. Symbolic Logic 51 (1986), no. 3, 526–546. MR 853837, DOI 10.2307/2274011 C. C. Chang and H. J. Keisler, Model theory, North-Holland, 1973.
- Jussi Ketonen, On the existence of $P$-points in the Stone-Čech compactification of integers, Fund. Math. 92 (1976), no. 2, 91–94. MR 433387, DOI 10.4064/fm-92-2-91-94
- Kenneth Kunen, Some points in $\beta N$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 3, 385–398. MR 427070, DOI 10.1017/S0305004100053032
- A. R. D. Mathias, A remark on rare filters, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1095–1097. MR 0373898
- Arnold W. Miller, There are no $Q$-points in Laver’s model for the Borel conjecture, Proc. Amer. Math. Soc. 78 (1980), no. 1, 103–106. MR 548093, DOI 10.1090/S0002-9939-1980-0548093-2
- Arnold W. Miller, A characterization of the least cardinal for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR 671224, DOI 10.1090/S0002-9939-1982-0671224-2
- D. H. Fremlin and P. J. Nyikos, Saturating ultrafilters on $\textbf {N}$, J. Symbolic Logic 54 (1989), no. 3, 708–718. MR 1011162, DOI 10.2307/2274735 J. Roitman, Non-isomorphic $H$-fields from non-isomorophic ultrapowers, Math. Z. 181 (1982), 93-96.
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- Juris Steprāns, Cardinal arithmetic and $\aleph _{1}$-Borel sets, Proc. Amer. Math. Soc. 84 (1982), no. 1, 121–126. MR 633292, DOI 10.1090/S0002-9939-1982-0633292-3 A. Taylor, On the existence of $P$-points and $Q$-points, preprint.
- Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
- William Weiss, Versions of Martin’s axiom, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 827–886. MR 776638
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 233-241
- MSC: Primary 03E05; Secondary 03E65, 04A20, 54A25
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993747-3
- MathSciNet review: 993747