## On the generic existence of special ultrafilters

HTML articles powered by AMS MathViewer

- by R. Michael Canjar
- Proc. Amer. Math. Soc.
**110**(1990), 233-241 - DOI: https://doi.org/10.1090/S0002-9939-1990-0993747-3
- PDF | Request permission

## Abstract:

We introduce the concept of the*generic existence*of $P$-point, $Q$-point, and selective ultrafilters, a concept which is somewhat stronger than the existence of these sorts of ultrafilters. We show that selective ultrafilters exist generically iff semiselectives do iff ${m_c} = c$, and we show that $Q$-point ultrafilters exist generically iff semi-$Q$-points do iff ${m_c} = d$, where $d$ is the minimal cardinality of a dominating family of functions and ${m_c}$ is the minimal cardinality of a cover of the real line by nowhere-dense sets. These results complement a result of Ketonen, that $P$-points exist generically iff $c = d$, and one of P. Nyikos and D. H. Fremlin, that saturated ultrafilters exist generically iff ${m_c} = c = {2^{ < c}}$.

## References

- Tomek Bartoszyński,
*Combinatorial aspects of measure and category*, Fund. Math.**127**(1987), no. 3, 225–239. MR**917147**, DOI 10.4064/fm-127-3-225-239 - James E. Baumgartner and Richard Laver,
*Iterated perfect-set forcing*, Ann. Math. Logic**17**(1979), no. 3, 271–288. MR**556894**, DOI 10.1016/0003-4843(79)90010-X
J. Baumgartner, private letter to the author, 11 November 1988.
- Murray G. Bell,
*On the combinatorial principle $P({\mathfrak {c}})$*, Fund. Math.**114**(1981), no. 2, 149–157. MR**643555**, DOI 10.4064/fm-114-2-149-157 - Murray Bell and Kenneth Kunen,
*On the PI character of ultrafilters*, C. R. Math. Rep. Acad. Sci. Canada**3**(1981), no. 6, 351–356. MR**642449** - Andreas Blass and Saharon Shelah,
*There may be simple $P_{\aleph _1}$- and $P_{\aleph _2}$-points and the Rudin-Keisler ordering may be downward directed*, Ann. Pure Appl. Logic**33**(1987), no. 3, 213–243. MR**879489**, DOI 10.1016/0168-0072(87)90082-0 - David Booth,
*Ultrafilters on a countable set*, Ann. Math. Logic**2**(1970/71), no. 1, 1–24. MR**277371**, DOI 10.1016/0003-4843(70)90005-7 - Michael Canjar,
*Countable ultraproducts without CH*, Ann. Pure Appl. Logic**37**(1988), no. 1, 1–79. MR**924678**, DOI 10.1016/0168-0072(88)90048-6 - R. Michael Canjar,
*Small filter forcing*, J. Symbolic Logic**51**(1986), no. 3, 526–546. MR**853837**, DOI 10.2307/2274011
C. C. Chang and H. J. Keisler, - Jussi Ketonen,
*On the existence of $P$-points in the Stone-Čech compactification of integers*, Fund. Math.**92**(1976), no. 2, 91–94. MR**433387**, DOI 10.4064/fm-92-2-91-94 - Kenneth Kunen,
*Some points in $\beta N$*, Math. Proc. Cambridge Philos. Soc.**80**(1976), no. 3, 385–398. MR**427070**, DOI 10.1017/S0305004100053032 - A. R. D. Mathias,
*A remark on rare filters*, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vols. I, II, III, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1095–1097. MR**0373898** - Arnold W. Miller,
*There are no $Q$-points in Laver’s model for the Borel conjecture*, Proc. Amer. Math. Soc.**78**(1980), no. 1, 103–106. MR**548093**, DOI 10.1090/S0002-9939-1980-0548093-2 - Arnold W. Miller,
*A characterization of the least cardinal for which the Baire category theorem fails*, Proc. Amer. Math. Soc.**86**(1982), no. 3, 498–502. MR**671224**, DOI 10.1090/S0002-9939-1982-0671224-2 - D. H. Fremlin and P. J. Nyikos,
*Saturating ultrafilters on $\textbf {N}$*, J. Symbolic Logic**54**(1989), no. 3, 708–718. MR**1011162**, DOI 10.2307/2274735
J. Roitman, - Saharon Shelah,
*Proper forcing*, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR**675955** - Juris Steprāns,
*Cardinal arithmetic and $\aleph _{1}$-Borel sets*, Proc. Amer. Math. Soc.**84**(1982), no. 1, 121–126. MR**633292**, DOI 10.1090/S0002-9939-1982-0633292-3
A. Taylor, - Eric K. van Douwen,
*The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR**776622** - William Weiss,
*Versions of Martin’s axiom*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 827–886. MR**776638**

*Model theory*, North-Holland, 1973.

*Non-isomorphic*$H$

*-fields from non-isomorophic ultrapowers*, Math. Z.

**181**(1982), 93-96.

*On the existence of*$P$

*-points and*$Q$

*-points*, preprint.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**110**(1990), 233-241 - MSC: Primary 03E05; Secondary 03E65, 04A20, 54A25
- DOI: https://doi.org/10.1090/S0002-9939-1990-0993747-3
- MathSciNet review: 993747