## On Mycielski ideals

HTML articles powered by AMS MathViewer

- by Marek Balcerzak and Andrzej Rosłanowski
- Proc. Amer. Math. Soc.
**110**(1990), 243-250 - DOI: https://doi.org/10.1090/S0002-9939-1990-1007486-6
- PDF | Request permission

## Abstract:

We investigate relationships between Mycielski ideals in ${2^\omega }$ generated by different systems. For a fixed Mycielski ideal $\mathfrak {M}$ we study properties of its compact members. For a perfect Polish space $X$ and certain sets $A \subseteq X \times {2^\omega }$, the positions of $\{ x \in X:{A_X} \notin \mathfrak {M}\}$ in the Borel and projective hierarchies are established and other section properties are observed.## References

- Marek Balcerzak,
*The decomposition property of $\sigma$-ideals. II*, Rad. Mat.**3**(1987), no. 2, 261–266 (English, with Serbo-Croatian summary). MR**931982**
—, - John P. Burgess,
*Classical hierarchies from a modern standpoint. I. $C$-sets*, Fund. Math.**115**(1983), no. 2, 81–95. MR**699874**, DOI 10.4064/fm-115-2-81-95 - Martin Gavalec,
*Iterated products of ideals of Borel sets*, Colloq. Math.**50**(1985), no. 1, 39–52. MR**818086**, DOI 10.4064/cm-50-1-39-52 - Alexander S. Kechris,
*Measure and category in effective descriptive set theory*, Ann. Math. Logic**5**(1972/73), 337–384. MR**369072**, DOI 10.1016/0003-4843(73)90012-0 - A. S. Kechris, A. Louveau, and W. H. Woodin,
*The structure of $\sigma$-ideals of compact sets*, Trans. Amer. Math. Soc.**301**(1987), no. 1, 263–288. MR**879573**, DOI 10.1090/S0002-9947-1987-0879573-9 - K. Kuratowski,
*Topology. Vol. I*, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR**0217751**
L. Larson, - Ashok Maitra,
*Selectors for Borel sets with large sections*, Proc. Amer. Math. Soc.**89**(1983), no. 4, 705–708. MR**719000**, DOI 10.1090/S0002-9939-1983-0719000-7 - A. Maitra and V. V. Srivatsa,
*Parametrizations of Borel sets with large sections*, Proc. Amer. Math. Soc.**93**(1985), no. 3, 543–548. MR**774020**, DOI 10.1090/S0002-9939-1985-0774020-3 - Donald A. Martin,
*Borel determinacy*, Ann. of Math. (2)**102**(1975), no. 2, 363–371. MR**403976**, DOI 10.2307/1971035 - Yiannis N. Moschovakis,
*Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR**561709** - Jan Mycielski,
*Some new ideals of sets on the real line*, Colloq. Math.**20**(1969), 71–76. MR**241595**, DOI 10.4064/cm-20-1-71-76 - Andrzej Rosłanowski,
*On game ideals*, Colloq. Math.**59**(1990), no. 2, 159–168. MR**1090647**, DOI 10.4064/cm-59-2-159-168 - R. M. Shortt,
*Product sigma-ideals*, Topology Appl.**23**(1986), no. 3, 279–290. MR**858336**, DOI 10.1016/0166-8641(85)90045-8 - Robert Vaught,
*Invariant sets in topology and logic*, Fund. Math.**82**(1974/75), 269–294. MR**363912**, DOI 10.4064/fm-82-3-269-294

*On*$\sigma$

*-ideals having perfect members in all perfect sets*, preprint.

*Typical compact sets in the Hausdorff metric are porous*, Real Anal. Exchange

**13**(1987-88), 116-118.

## Bibliographic Information

- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**110**(1990), 243-250 - MSC: Primary 04A15; Secondary 54H05
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007486-6
- MathSciNet review: 1007486