On paving sequences in $C^ *$-algebras
HTML articles powered by AMS MathViewer
- by Alexander Kaplan
- Proc. Amer. Math. Soc. 110 (1990), 159-168
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007502-1
- PDF | Request permission
Abstract:
The notion of a paving sequence in a ${C^ * }$-algebra is introduced and several properties of ${C^ * }$-algebras which admit such sequences are studied.References
- Man Duen Choi and Edward G. Effros, Nuclear $C^*$-algebras and the approximation property, Amer. J. Math. 100 (1978), no. 1, 61–79. MR 482238, DOI 10.2307/2373876
- J. Dixmier, On some $C^{\ast }$-algebras considered by Glimm, J. Functional Analysis 1 (1967), 182–203. MR 0213886, DOI 10.1016/0022-1236(67)90031-6
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762
- Edward G. Effros, Amenability and virtual diagonals for von Neumann algebras, J. Funct. Anal. 78 (1988), no. 1, 137–153. MR 937636, DOI 10.1016/0022-1236(88)90136-X
- Edward G. Effros and Akitaka Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), no. 2, 257–276. MR 891774, DOI 10.1512/iumj.1987.36.36015
- James G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340. MR 112057, DOI 10.1090/S0002-9947-1960-0112057-5
- Eberhard Kirchberg, $C^*$-nuclearity implies CPAP, Math. Nachr. 76 (1977), 203–212. MR 512362, DOI 10.1002/mana.19770760115
- Gert K. Pedersen, $C^{\ast }$-algebras and their automorphism groups, London Mathematical Society Monographs, vol. 14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979. MR 548006
- W. Forrest Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211–216. MR 69403, DOI 10.1090/S0002-9939-1955-0069403-4
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 159-168
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1990-1007502-1
- MathSciNet review: 1007502