An infinite-dimensional extension of theorems of Hartman and Wintner on monotone positive solutions of ordinary differential equations
HTML articles powered by AMS MathViewer
- by A. F. Izé
- Proc. Amer. Math. Soc. 110 (1990), 77-84
- DOI: https://doi.org/10.1090/S0002-9939-1990-1015679-7
- PDF | Request permission
Abstract:
Consider the equation (1) $\dot x + A\left ( t \right )x = - f\left ( {t,x} \right )\;x\left ( 0 \right ) = {x^0},{x^0} \in X$, a Banach sequence space with a Schauder Basis. It is proved that if $f\left ( {t,0} \right ) = 0,A\left ( t \right )\left ( \cdot \right ) + f\left ( {t, \cdot } \right )$ is a positive operator and the solution operator $K\left ( {t,0} \right ){x^0} = {x^0} - \int _0^t {A\left ( s \right )ds - \int _0^t {f\left ( {s,x\left ( s \right )} \right )ds} }$ is compact for $t > 0$, then system (1) has at least one solution $x\left ( t \right ),x\left ( t \right )\not \equiv 0$ such that $x\left ( t \right ) \geq 0, - \dot x\left ( t \right ) \leq 0$, and consequently $x\left ( t \right )$ are monotone nonincreasing for $t \geq 0$.References
- Klaus Deimling, Ordinary differential equations in Banach spaces, Lecture Notes in Mathematics, Vol. 596, Springer-Verlag, Berlin-New York, 1977. MR 0463601
- Philip Hartman and Aurel Wintner, Linear differential and difference equations with monotone solutions, Amer. J. Math. 75 (1953), 731–743. MR 57404, DOI 10.2307/2372548 —, On monotone solutions of systems of nonlinear differential equations, Amer. J. Math. (1954), 860-866.
- Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- A. F. Izé, On a fixed point index method for the analysis of the asymptotic behavior and boundary value problems of infinite-dimensional dynamical systems and processes, J. Differential Equations 52 (1984), no. 2, 162–174. MR 741266, DOI 10.1016/0022-0396(84)90175-X
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448, Springer, Berlin, 1975, pp. 25–70. MR 0407477
- M. A. Krasnosel′skiĭ, Positive solutions of operator equations, P. Noordhoff Ltd., Groningen, 1964. Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron. MR 0181881
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 77-84
- MSC: Primary 34G20; Secondary 34C35, 58D25
- DOI: https://doi.org/10.1090/S0002-9939-1990-1015679-7
- MathSciNet review: 1015679