$D$-representation of subdifferentials of directionally Lipschitz functions
HTML articles powered by AMS MathViewer
- by Alejandro Jofré and Lionel Thibault
- Proc. Amer. Math. Soc. 110 (1990), 117-123
- DOI: https://doi.org/10.1090/S0002-9939-1990-1015680-3
- PDF | Request permission
Abstract:
Subdifferentials of convex functions and some regular functions $f$ are expressed in terms of limiting gradients at points in a given dense subset of ${\text {dom}}\nabla f$.References
- J. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed set in space II: applications (to appear).
- Shu Chung Shih, Remarques sur le gradient généralisé, J. Math. Pures Appl. (9) 61 (1982), no. 3, 301–310 (1983) (French, with English summary). MR 690398
- Frank H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247–262. MR 367131, DOI 10.1090/S0002-9947-1975-0367131-6 —, Nonsmooth analysis and optimization, Wiley-Interscience, New York, 1983.
- R. Correa and A. Jofré, Tangentially continuous directional derivatives in nonsmooth analysis, J. Optim. Theory Appl. 61 (1989), no. 1, 1–21. MR 993912, DOI 10.1007/BF00940840
- R. Correa and L. Thibault, Subdifferential analysis of bivariate separately regular functions, J. Math. Anal. Appl. 148 (1990), no. 1, 157–174. MR 1052052, DOI 10.1016/0022-247X(90)90035-E
- John R. Giles, Convex analysis with application in the differentiation of convex functions, Research Notes in Mathematics, vol. 58, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650456
- J.-B. Hiriart-Urruty, A note on the mean value theorem for convex functions, Boll. Un. Mat. Ital. B (5) 17 (1980), no. 2, 765–775 (English, with Italian summary). MR 580556
- Robert Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977), no. 6, 959–972. MR 461556, DOI 10.1137/0315061 R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970.
- R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math. 32 (1980), no. 2, 257–280. MR 571922, DOI 10.4153/CJM-1980-020-7
- R. T. Rockafellar, Directionally Lipschitzian functions and subdifferential calculus, Proc. London Math. Soc. (3) 39 (1979), no. 2, 331–355. MR 548983, DOI 10.1112/plms/s3-39.2.331
- R. T. Rockafellar, Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. Oper. Res. 6 (1981), no. 3, 424–436. MR 629642, DOI 10.1287/moor.6.3.424
- Lionel Thibault, On generalized differentials and subdifferentials of Lipschitz vector-valued functions, Nonlinear Anal. 6 (1982), no. 10, 1037–1053. MR 678055, DOI 10.1016/0362-546X(82)90074-8
- Jay S. Treiman, Clarke’s gradients and epsilon-subgradients in Banach spaces, Trans. Amer. Math. Soc. 294 (1986), no. 1, 65–78. MR 819935, DOI 10.1090/S0002-9947-1986-0819935-8
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 110 (1990), 117-123
- MSC: Primary 90C48; Secondary 46G05, 49A52, 58C20, 90C25
- DOI: https://doi.org/10.1090/S0002-9939-1990-1015680-3
- MathSciNet review: 1015680